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Integrable boundary conditions are studied for critical A�D�E and general
graph-based lattice models of statistical mechanics. In particular, using techni-
ques associated with the Temperley�Lieb algebra and fusion, a set of boundary
Boltzmann weights which satisfies the boundary Yang�Baxter equation is
obtained for each boundary condition. When appropriately specialized, these
boundary weights, each of which depends on three spins, decompose into more
natural two-spin edge weights. The specialized boundary conditions for the
A�D�E cases are naturally in one-to-one correspondence with the conformal
boundary conditions of sl@(2) unitary minimal conformal field theories. Supported
by this and further evidence, we conclude that, in the continuum scaling limit,
the integrable boundary conditions provide realizations of the complete set of
conformal boundary conditions in the corresponding field theories.

KEY WORDS: Boundary Yang�Baxter equation; conformal boundary condi-
tions; conformal field theory; integrable boundary conditions; integrable lattice
models.

1. INTRODUCTION AND OVERVIEW

The notion of conformal boundary conditions in conformal field theories,
in the sense introduced in ref. 1, and the notion of integrable boundary
conditions in integrable lattice models, in the sense introduced in ref. 2, are
both well developed. It is also well known that conformal field theories can
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be identified with the continuum scaling limit of certain critical integrable
lattice models of statistical mechanics. A natural question to address, there-
fore, is whether similar associations can be made between the correspond-
ing boundary conditions. We shall demonstrate here that indeed they can.
In so doing, not only is the existence of deep connections between confor-
mal and integrable boundary conditions established, but a means is also
provided for gaining insights, generally not available within conformal field
theory alone, into the physical nature of conformal boundary conditions.

That there should be a relationship between such integrable and con-
formal boundary conditions is not immediately apparent and, accordingly,
the correspondence is somewhat subtle. It is known that nonintegrable
boundary conditions can be identified with certain conformal boundary
conditions and, conversely, we expect that integrable boundary conditions
will only lead to conformal boundary conditions upon suitable specialization.
Nevertheless, we shall explicitly show for all of the sl@(2) cases considered
here that an integrable boundary condition can, after such specialization,
be naturally associated with every conformal boundary condition. Further-
more, the generality of the approach used here suggests that it is possible
to obtain an integrable boundary condition corresponding to each allow-
able conformal boundary condition in any rational conformal field theory
which is realizable as the continuum scaling limit of a Yang�Baxter-inte-
grable lattice model.

The basic context for this work is provided by certain general results
on boundary conditions. For statistical mechanical lattice models, it is well
known from ref. 3 that a model is integrable on a torus by commuting
transfer matrix techniques if its Boltzmann weights satisfy the Yang�Baxter
equation. A result of ref. 2 then states that such a model is similarly inte-
grable on a cylinder with particular boundary conditions if corresponding
boundary Boltzmann weights are used which satisfy a boundary Yang�
Baxter equation. A further result, obtained in ref. 4, is that such boundary
weights can be constructed using a general procedure involving the process
of fusion. For conformal field theories, there exists a fundamental consis-
tency equation of ref. 1 associated with the conformal boundary conditions
of any rational theory on a cylinder. Furthermore, as shown in refs. 5�9,
the general task of solving this equation and completely classifying the con-
formal boundary conditions is essentially equivalent to that of classifying
the representations, using matrices with nonnegative integer entries, of the
fusion algebra.

In this paper, we consider the critical unitary A�D�E integrable lattice
models, as introduced in ref. 10, and the critical series of sl@(2) unitary min-
imal conformal field theories with central charge c<1, as first identified
in refs. 11 and 12 and classified on a torus using an A�D�E scheme in
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refs. 13�15. As shown in refs. 16�18, the continuum scaling limit of these
lattice models is described by these field theories. Furthermore, the task of
classifying the conformal boundary conditions of these theories on a cylinder
was carried out in full in ref. 9, leading to an A�D�E scheme matching that
for the classification of the theories on a torus. Lattice realizations of some
of these conformal boundary conditions have been identified and studied in
refs. 1, 7, 19�29, but in most of these cases the lattice boundary conditions
are not integrable in the sense of being implemented by boundary weights
which satisfy the boundary Yang�Baxter equation. Here, we use the fusion
procedure of ref. 4 to obtain systematically such integrable boundary
weights and we show that, when appropriately specialized, these can be
interpreted as providing realizations of the complete sets of conformal
boundary conditions, as classified in ref. 9, of the corresponding field
theories on a cylinder.

In obtaining the integrable boundary conditions for the critical unitary
A�D�E models, it is convenient to consider a somewhat larger class of
integrable lattice models. These models, essentially introduced in ref. 30,
are restricted-solid-on-solid interaction-round-a-face models and each is
based on a graph G. In such a model, the spin states are the nodes of G,
there is an adjacency condition on the states of neighboring spins given by
the edges of G and the bulk Boltzmann weights are defined in terms of a
particular eigenvalue and eigenvector of the adjacency matrix of G. The
critical unitary A�D�E models are obtained by taking G as an A, D or E
Dynkin diagram and using the Perron�Frobenius eigenvalue and eigen-
vector of its adjacency matrix. These general graph-based models are also
closely related to the Temperley�Lieb algebra, it being possible to express
their bulk weights in terms of matrices of a certain representation of this
algebra involving G. The fact that these weights satisfy the Yang�Baxter
equation is then a simple consequence of the defining relations of the
algebra.

In Section 2, we consider the abstract Temperley�Lieb algebra. The
results are thus independent of its representation and apply to the class of
lattice models associated with the Temperley�Lieb algebra, this including
the graph-based models of interest as well as certain vertex models. The
main emphasis of Section 2 is on the process of fusion and its use in the
construction of boundary operators which correspond to boundary weights.
In particular, we list various important properties satisfied by the operators
which implement fusion, including projection and push-through properties,
and we obtain several results on the properties of the constructed boundary
operators, including the facts that they satisfy an operator form of the
boundary Yang�Baxter equation and that they can be expressed as a linear
combination of fusion operators.
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In Section 3, we specialize to representations of the Temperley�Lieb
algebra involving graphs and study the corresponding graph-based inte-
grable lattice models. For any such model, we then obtain an integrable
boundary condition and a related set of boundary weights for each pair
(r, a), where r is a fusion level and a is a spin state or node of G. In terms
of the procedure of ref. 4, the (r, a) boundary weights are constructed from
a fused double block of bulk weights of width r&1, with the spin states on
the corners of one end of the block fixed to a. These boundary weights each
depend on three spins, but we find using results from Section 2 that, upon
appropriate specialization, all of the weights in a set can be simultaneously
decomposed into physically more natural two-spin edge weights. We refer
to the point at which this occurs as the conformal point, since it is here
that we expect correspondence with conformal boundary conditions. While
certain integrable boundary weights for some of the models considered here
have been obtained in previous studies, specifically, refs. 4, 7, 31�35, this
crucial decomposition had not previously been observed. We conclude
Section 3 by considering in detail the symmetry properties of a lattice on
a cylinder with particular left and right boundary conditions.

In Section 4, we specialize to the critical unitary A�D�E models. We
obtain completely explicit expressions for the boundary edge weights of the
A and D cases and study A3 , A4 , D4 and E6 as important examples. We
also obtain an important relation through which any A�D�E partition
function can be expressed as a sum of certain A partition functions. For all
of these A�D�E models, we find that, at the conformal point, the (r, a) and
(g&r&1, a� ) boundary conditions are equivalent, where g is the Coxeter
number of the A�D�E Dynkin diagram G and a [ a� is a particular involu-
tion of the nodes of G. This implies that these boundary conditions are in
one-to-one correspondence with the conformal boundary conditions of the
unitary minimal theories M(Ag&2 , G), as classified in ref. 9. We then use
this and further evidence to argue that the integrable boundary conditions
obtained here provide realizations of the M(Ag&2 , G) conformal boundary
conditions.

In Section 5, we briefly discuss ways in which the formalism of this
paper could be applied to other models.

2. RELEVANT RESULTS ON THE TEMPERLEY�LIEB ALGEBRA

In this section, we list and obtain various results on the Temperley�
Lieb algebra. The defining relations of this algebra were first identified in
ref. 36 and the formalism used here is largely based on that of refs. 37�39.

Our primary objective in this section is to study operators in the abstract
algebra, which, in certain representations of the algebra, correspond to
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bulk weights and boundary weights of a lattice model. In particular,
motivated by the procedure of ref. 4, we shall construct certain boundary
operators. This procedure involves fusion, which can be regarded as a
means whereby new fused operators satisfying the Yang�Baxter equation
are formed by applying certain fusion operators to blocks of unfused
operators. The process of fusion was introduced in ref. 40 and first used in
the context of the Temperley�Lieb algebra in refs. 37 and 38.

2.1. The Temperley�Lieb Algebra and General Notation

The Temperley�Lieb algebra T(L, *), with L # Z�0 and * # C, is
generated by the identity I together with operators e1 ,..., eL which satisfy

e2
j =2 cos * ej

ej eke j=ej , | j&k|=1 (2.1)

ej ek=ek ej , | j&k|>1

The various operators to be studied in Section 2 will all be elements
of T(L, *) for some fixed L and *.

Throughout this paper, we shall use the notation

sr(u)={
sin(r*+u)

sin *
,

(&1)(r+1) *�?(r+u),

*�? � Z

*�? # Z
(2.2)

for any r # Z and u # C, with * being the same constant as in T(L, *).
When T(L, *) is applied to a lattice model, * is the crossing parameter.

For the A�D�E models, this parameter is always a rational but noninteger
multiple of ? so that the first case of (2.2) applies. We also note that the
second case of (2.2) is simply a limiting case of the first,

sr(u)|*�? # Z= lim
*$ � *

sin(r*$+(*$&*) u)
sin *$

(2.3)

so that in proving identities satisfied by these functions it is often sufficient
to consider only the first case.

We shall also denote, for any r # Z,

Sr=sr(0) (2.4)
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We see, as examples, that for any *,

S0=0, S1=1, S2=2 cos * (2.5)

2.2. Face Operators

We now introduce face operators Xj (u), for j # [1,..., L] and u # C, as

Xj (u)=s1(&u) I+s0(u) ej (2.6)

These operators correspond in a lattice model to the bulk Boltzmann
weights of faces of the lattice and in this context u is the spectral parameter.

We shall represent the face operators diagrammatically as

Xj (u)= (2.7)

From the Temperley�Lieb relations (2.1) and properties of the func-
tions (2.2), it follows that the face operators satisfy the operator form of the
Yang�Baxter equation,

Xj (u) Xj+1(u+v) Xj (v)=Xj+1(v) Xj (u+v) Xj+1(u)

(2.8)

We see that the face operators also satisfy the commutation relation

Xj (u) Xj (v)=Xj (v) Xj (u) (2.9)

and the operator form of the inversion relation

Xj (&u) Xj (u)=s1(&u) s1(u) I (2.10)
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2.3. Fusion Operators

We now proceed to a consideration of some aspects of the process of
fusion. In particular, we shall state some important properties of fusion
operators. The proofs of these or similar properties can be found in refs. 37
and 38.

In general, fusion levels correspond to representations of a Lie algebra.
In the case considered here, this algebra is sl@(2) and the fusion levels are
labeled by a single integer r # [1, 2,..., g], where the maximum fusion level
g depends on * according to

g={h,
�,

*=k?�h, k and h coprime integers, h>1
otherwise

(2.11)

We note that for the A�D�E lattice models, the first case of (2.11) always
applies.

We now introduce fusion operators Pr
j , for r # [1,..., min(g, L+2)]

and j # [1,..., L+3&r], these being defined recursively by

P1
j =P2

j =I

Pr
j =

1
Sr&1

Pr&1
j+1 Xj (&(r&2) *) Pr&1

j+1 , r�3
(2.12)

We note that, for finite g, the restriction of fusion levels to r�g is
necessary in order to avoid Sr&1=0 in the denominator in (2.12).

We shall represent the fusion operators diagrammatically as

Pr
j = (2.13)

In general, Pr
j can be expressed in terms of I and ej ,..., ej+r&3, the

cases of the first few fusion levels being

P1
j =P2

j =I, P3
j =I&

1
S2

ej

(2.14)

P4
j =I&

S2

S3

(ej+ej+1)+
1

S3

(ejej+1+ej+1ej )
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The fusion operators can also be expressed as

Pr
j = `

r&1

k=2

(Sk)k&r

(2.15)

= `
r&1

k=2

(Sk)k&r

A key property of the fusion operators is that they are projectors,

(Pr
j )

2=Pr
j (2.16)

In fact, more generally, we have the property

Pr$
j $P

r
j =Pr

j Pr$
j $=Pr

j , if 0� j $& j�r&r$ (2.17)

A useful case of this is r$=3, from which we have

ej $Pr
j =Pr

j ej $=0, if j� j $� j+r&3 (2.18)
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The fusion operators also satisfy the Hecke-like identity

S 2
r&1Pr

j+1Pr
j Pr

j+1&Pr
j+1=S 2

r&1Pr
j Pr

j+1 Pr
j &Pr

j =Sr&2SrPr+1
j (2.19)

2.4. Fused Row Operators

We now introduce operators Y r
j (u) and Y� r

j (u), for r # [1,..., min(g&1,
L+1)] and j # [1,..., L+2&r], which correspond to fused rows of faces.
These operators are related to products of r&1 face operators, for r�2, by

`
r&2

k=1

sk(&u) Y r
j (u)=Pr

j+1Xj (u&(r&2) *) } } } Xj+r&3(u&*) Xj+r&2(u)

=Xj (u) Xj+1(u&*) } } } Xj+r&2(u&(r&2) *) Pr
j

(2.20a)

and

`
r&3

k=0

s&k(&u) Y� r
j (u)=Pr

j Xj+r&2(u) Xj+r&3(u+*) } } } Xj (u+(r&2) *)

=Xj+r&2(u+(r&2) *) } } } Xj+1(u+*) Xj (u) Pr
j+1

(2.20b)
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The second (or fourth) equalities in (2.20) imply the push-through relations

Y r
j (u)=Pr

j+1Y r
j (u)=Y r

j (u) Pr
j

(2.21)
Y� r

j (u)=Pr
j Y� r

j (u)=Y� r
j (u) Pr

j+1

and can be derived using (2.15) and repeated application of (2.8).
The fused row operators can be written in terms of fusion operators as

Y r
j (u)=Sr&1s1(u) Pr

j+1P r
j &Srs0(u) Pr+1

j
(2.22)

Y� r
j (u)=Sr&1sr&1(u) Pr

j Pr
j+1&Srsr&2(u) Pr+1

j

The equivalence of (2.20) and (2.22) follows from several of the properties
of fusion operators listed in Section 2.3.

We note, as examples, that for the first two fusion levels,

Y1
j (u)=&s0(u) I, Y� 1

j (u)=s1(&u) I, Y 2
j (u)=Y� 2

j (u)=Xj (u)

(2.33)

An important property of the fused row operators is that they satisfy
the mixed Yang�Baxter equations,

Xj (u&v) Y r
j+1(u) Y r

j (v)=Y r
j+1(v) Y r

j (u) X j+r&1(u&v) (2.24)

Xj+r&1(u&v) Y� r
j (u) Y� r

j+1(v)=Y� r
j (v) Y� r

j+1(u) X j(u&v) (2.25)

Y r
j (u) Xj+r&1(u+v) Y� r

j (v)=Y� r
j+1(v) Xj (u+v) Y r

j+1(u) (2.26)

These equations can be obtained using (2.20) and repeated application of
(2.8).

The fused row operators also satisfy the product identities

Y r
j (u) Y� r

j (v)=s1(u) sr&1(v) Pr
j+1&Sr s0(u+v) Pr+1

j
(2.27)

Y� r
j (u) Y r

j (v)=sr&1(u) s1(v) Pr
j &Srs0(u+v) Pr+1

j

these being most easily derived using (2.22) and properties of the fusion
operators.

2.5. Boundary Operators

We now introduce boundary operators K r
j (u, !), with ! # C, as

products of two fused row operators,

K r
j (u, !)=&Y r

j (u&*&!) Y� r
j (u+*+!) (2.28)
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These operators correspond in a lattice model to boundary Boltzmann
weights and in this context ! is a boundary field parameter.

From (2.27), we see that the boundary operators can be written in
terms of fusion operators as

K r
j (u, !)=s0(!&u) sr(!+u) P r

j+1+Srs0(2u) Pr+1
j (2.29)

An alternative expression, which follows using (2.12) on the second term
on the right side of (2.29), is

K r
j (u, !)=s0(!+u) sr(!&u) P r+1

j +
Sr&1

Sr
s0(!&u) sr(!+u) Pr

j+1 ej Pr
j+1

(2.30)

We see, as examples, that for the first two fusion levels,

K 1
j (u, !)=s0(!+u) s1(!&u) I

(2.31)
K 2

j (u, !)=s0(!+u) s2(!&u) I&s0(2u) ej

The key property of the face and boundary operators is that they
satisfy the operator form of the boundary Yang�Baxter equation,

Xj (u&v) K r
j+1(u, !) Xj (u+v) K r

j+1(v, !)

=K r
j+1(v, !) X j (u+v) K r

j+1(u, !) Xj (u&v) (2.32)

This can be proved by substituting (2.28) into the left side of (2.32), using
(2.26) followed by (2.24) to bring Xj+r&1(u&v) adjacent to X j+r&1(u+v),
interchanging the order of these face operators using (2.9), and then using
(2.25) followed by (2.26) to give the right side of (2.32).

In terms of the construction procedure of ref. 4, the boundary oper-
ators K r

j (u, !) can be considered as a family of solutions, one solution for
each value of r, of (2.32) with given Xj (u), these solutions having been con-
structed by starting with the identity solution of (2.32) and adding a fused
double row of faces of width r&1.

The boundary operators also satisfy the operator form of the bound-
ary inversion relation,

K r
j (u, !) K r

j (&u, !)=s0(!&u) s0(!+u) sr(!&u) sr(!+u) Pr
j+1 (2.33)

this being most easily obtained using (2.29) and properties of the fusion
operators.
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3. LATTICE MODELS BASED ON GRAPHS

In this section, we consider representations of the Temperley�Lieb
algebra involving a graph and the associated graph-based lattice models.
Our general treatment is motivated by that introduced in refs. 10 and 30
and, when considering fusion for these models, our approach is also
motivated by certain results of refs. 41�44.

A graph-based lattice model of the type to be considered here can be
associated with any pair G and �, where G is a connected graph containing
only unoriented, single edges and � is an eigenvector of the adjacency
matrix of G with all nonzero entries. All of the formalism and results of
Section 3 are applicable to any choice of G and �, and only in Section 4
will we eventually specialize G to be an A, D or E Dynkin diagram and �
to be the Perron�Frobenius eigenvector of its adjacency matrix, thus giving
the critical unitary A�D�E models.

In a lattice model based on G, a spin is attached to each site of a two-
dimensional square lattice, with the possible states of each spin being the
nodes of G and there being a lattice adjacency condition stipulating that,
in any assignment of spin states to the lattice, the states on each pair of
nearest-neighbor sites must correspond to an edge of G. These models are
interaction-round-a-face models, so that a bulk Boltzmann weight is
associated with each set of four spin states adjacent around a square face.
Here, we shall also obtain and use sets of boundary weights, each of these
weights being associated with three adjacent spin states. The partition func-
tion of the model on a cylinder is then the sum, over all possible spin
assignments, of products of Boltzmann weights, with each square face in
the bulk of the lattice contributing a bulk weight and each alternate triplet
of neighboring sites on the boundaries contributing a boundary weight.

The key property of the boundary weights obtained in this section
is that they satisfy the boundary Yang�Baxter equation for interaction-
round-a-face models. This equation was first used in refs. 33 and 45 and is
based on the reflection equation introduced in ref. 46. However, we note
that the boundary weights obtained here depend on certain additional
fusion indices, which gives them and the boundary Yang�Baxter equation
they satisfy a somewhat more general form than the form of those used in
all previous studies. We shall show that a further important property of the
three-spin boundary weights used here is that, at a certain point, they simul-
taneously decompose into more natural two-spin boundary edge weights.

Finally, using these and other local properties of the bulk and bound-
ary weights, we shall identify various symmetry properties of the partition
function and transfer matrices, including the invariance of the partition
function under interchanging parts or all of the left and right boundaries,
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and the facts that the transfer matrices form a commuting family and, in
certain cases, have all nonnegative eigenvalues.

3.1. Graphs and Paths

Throughout Section 3, we shall be considering a finite graph G with an
associated adjacency matrix G. We require that G contain only unoriented,
single edges, implying that G is symmetric and that each of its nonzero
entries is 1. In fact, the formalism of Section 3 can be generalized straight-
forwardly to encompass graphs with multiple edges, but since this is not
needed for the A�D�E cases of primary interest, we shall for simplicity
restrict our attention to graphs with only single edges.

We also require that G be connected, implying that G is indecomposable.
Perron�Frobenius theory then implies that G has a unique maximum
eigenvalue with an associated eigenvector whose entries are all positive.

We shall denote the set of all r-point paths on G, for r # Z�1 , by Gr;
that is,

Gr={(a0 ,..., ar&1) | a j # G, `
r&2

j=0

Gaj aj+1
=1= (3.1)

We note that G1 corresponds to the set of nodes of G and that G2 is the
set of edges of G.

We shall also denote the set of all r-point paths between a and b in G

by Gr
ab ; that is,

Gr
ab=[(a0 ,..., ar&1) # Gr | a0=a, ar&1=b] (3.2)

It follows that

|Gr
ab|=(Gr&1)ab (3.3)

3.2. Graph Representations of the Temperley�Lieb Algebra

A graph representation involving G of the Temperley�Lieb algebra
T(L, *) exists for each * for which 2 cos * is an eigenvalue of G with an
associated eigenvector � whose entries are all nonzero; that is, for each *
for which there exists a vector � satisfying

:
b # G

Gab �b=2 cos * �a and �a{0, for each a # G (3.4)

There is always at least one such case, namely that provided by the Perron�
Frobenius eigenvector and eigenvalue. We shall assume, throughout the rest
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of Section 3, that a fixed choice of * and � has been made. We note that,
since G is symmetric, cos * must be real so that each �a can, and will, be
assumed to be real. In the rest of this paper, we shall often use �1�2

a and �1�4
a ,

which we take to be positive for positive �a or to have arguments ?�2 and
?�4 respectively for negative �a .

The elements of the representation of T(L, *) associated with G and
� are matrices with rows and columns labeled by the paths of GL+2, with
the generators ej being defined by

ej(a0 ,..., aL+1), (b0 ,..., bL+1)
=

�1�2
aj

�1�2
bj

�aj&1

$aj&1aj+1
`

L+1

k=0
k{ j

$ak bk
(3.5)

It follows straightforwardly that the defining relations (2.1) of T(L, *) are
satisfied, with the first relation depending on (3.4).

3.3. Bulk Weights

We now proceed to a consideration of the lattice model based on the
graph G and associated with the adjacency matrix eigenvector �.

The bulk weights for this model are given explicitly, for each
(a, b, c, d, a) # G5, by

W \d
a

c
b } u+=s1(&u) $ac+

s0(u) �1�2
a �1�2

c

�b
$bd (3.6)

where u is the spectral parameter and *, on which s depends through (2.2),
is the crossing parameter. The spectral parameter can be considered as a
measure of anisotropy, with u=*�2 being an isotropic point and u=0 and
u=* being completely anisotropic points. We note that the number of bulk
weights is tr(G4).

We shall represent the bulk weights diagrammatically as

W \d
a

c
b } u+= (3.7)

These bulk weights are related to the face operators (2.6) by

W \d
a

c
b } u+=Xj (u)(e0 ,..., ej&2, d, a, b, ej+2 ,..., eL+1), (e0 ,..., ej&2, d, c, b, ej+2 ,..., eL+1) (3.8)
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where Xj (u) is taken in the graph representation of T(L, *). We see that
the bulk weights satisfy reflection symmetry,

W \d
a

c
b } u+=W \d

c
a
b } u+=W \b

a
c
d } u+ (3.9)

crossing symmetry,

W \d
a

c
b } u+=

�1�2
a �1�2

c

�1�2
b �1�2

d

W \c
b

d
a } *&u+ (3.10)

and the anisotropy property

W \d
a

c
b } 0+=$ac (3.11)

It follows from (2.8), (2.10) and (3.8) that the bulk weights also satisfy the
Yang�Baxter equation,

:
g # G

(GbgGdgGf g=1)

W \ f
a

g
b } u&v+ W \ g

b
d
c } u+ W \ f

g
e
d } v+

= :
g # G

(GagGcgGeg=1)

W \a
b

g
c } v+ W \ f

a
e
g } u+ W \e

g
d
c } u&v+

(3.12)

for each (a, b, c, d, e, f, a) # G7, and the inversion relation

:
e # G

(Gbe Gde=1)

W \d
a

e
b } &u+ W \d

e
c
b } u+

=

=s1(u) s1(&u) $ac (3.13)
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for each (a, b, c, d, a) # G5. In these and all subsequent diagrams, solid
circles are used to indicate spins whose states are summed over and dotted
lines are used to connect identical spins.

3.4. Fusion

We now consider various objects related to the process of fusion in
graph-based lattice models.

3.4.1. Maximum Fusion Level

Having chosen a graph G and an adjacency matrix eigenvector with
eigenvalue 2 cos *, the maximum fusion level g is then determined by *
according to (2.11). We note that although * itself is only determined by
the eigenvector up to sign and shifts of 2?, such changes in * do not affect
g or any other properties of interest.

As we shall see in more detail in Section 4.1, if G is an A, D or E
Dynkin diagram, then g is the Coxeter number of G, since any eigenvector
of G with all nonzero entries has an eigenvalue 2 cos(k?�h), where h # Z�2

is the Coxeter number of G and k # [1,..., h&1] is a Coxeter exponent
coprime to h.

Although the A�D�E cases are of primary interest, simply as a further
example, we briefly discuss the A(1), D(1) and E (1) Dynkin diagrams of the
affine Lie algebras. If G is one of these graphs, then any eigenvalue of G
can be written as 2 cos(k?�h), where h is the Coxeter number of G and
k # [0,..., h] is a Coxeter exponent. For all of these graphs, k=0 is a
Coxeter exponent, giving a maximal eigenvalue of 2, and in some cases
k=h is also a Coxeter exponent, giving a minimal eigenvalue of &2, so if
either of these eigenvalues is chosen, then g=� (and, incidentally, the
second case of (2.2) applies). However, if an eigenvalue corresponding to a
Coxeter exponent 0<k<h is chosen, then g is finite with g�h.

3.4.2. Fusion Matrices

We now introduce, for each r # [1,..., g] and a, b # G satisfying
(Gr&1)ab>0, a fusion matrix Pr(a, b) with rows and columns labeled by
the paths of Gr

ab and entries given by

Pr(a, b) (a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2, b)

={1,
Pr

1(a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2 , b)
,

r=1
r=2,..., g

(3.14)

where the fusion operator Pr
1 is defined by (2.12) and taken in the graph

representation of T(r&2, *).
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It follows from (2.16) that each fusion matrix is a projector,

Pr(a, b)2=Pr(a, b) (3.15)

It also follows, from (2.12), (3.8) and the first equality of (3.9), that each
fusion matrix is symmetric,

Pr(a, b)T=Pr(a, b) (3.16)

and, from (2.15) and (3.8), that a and b can interchanged according to

Pr(a, b) (a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2, b)=Pr(b, a) (b, cr&2 ,..., c1 , a), (b, dr&2 ,..., d1 , a) (3.17)

We note that the fusion matrices also satisfy more general projection-type
relations corresponding to those, (2.17), satisfied by the fusion operators.

3.4.3. Fused Adjacency Matrices

We next introduce fused adjacency matrices, F 1,..., F g, which are
defined by the sl@(2) recursion,

F 1=I ; F 2=G; F r=GF r&1&F r&2, r=3,..., g (3.18)

We see that each fused adjacency matrix is a polynomial in G and hence
that the set of these matrices is mutually commuting. In fact, the polyno-
mial form is given by the Type II Chebyshev polynomials Ur ,

F r=Ur&1(G�2) (3.19)

We note that at various places in Section 4, we shall be considering the
fused adjacency matrices of two different graphs and in these cases we shall
explicitly indicate the dependence on the graph as F(G)r.

The main relevance of the fused adjacency matrices at this point is that
their entries give the ranks of the fusion matrices, according to

F r
ab={0,

rank Pr(a, b),
(Gr&1)ab=0
(Gr&1)ab>0

(3.20)

This result can be proved by defining matrices F� r with entries F� r
ab given by

the right side of (3.20) and showing that these matrices satisfy relations
(3.18), so that F� r=F r. Showing that F� r satisfy the initial conditions of
(3.18) is straightforward. Meanwhile, showing that F� r satisfy the recursion
relation of (3.18) can be done by using the fact that the rank of any projector
is given by its trace (since by idempotence each eigenvalue is either 0 or 1,
the rank is the number of eigenvalues which are 1 and the trace is the sum
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of eigenvalues) and then using definitions (2.6), (3.5) and (3.14), the recur-
sion relation of (2.12), which is needed twice, relations (2.16) and (3.4), and
general properties of the trace and of the numbers Sr .

We note that (3.20) also implies that F r
ab are nonnegative integers. In

fact, the property that the entries of F r are integers follows immediately
from the properties that the entries of G are integers and that each F r is
a polynomial, with integer coefficients, in G, but the property that the
entries of F r are also nonnegative is less trivial and depends on the restric-
tion r�g and on some of the additionally-assumed properties of G, such
as its being symmetric. Since the result of nonnegativity is of some interest
in its own right, we note that (3.20) specifically implies that if G is any sym-
metric indecomposable matrix with each entry in [0, 1] and if F r is defined
in terms of G by (3.19), then each entry of F r is a nonnegative integer for
any r # [1,..., gmax], where gmax is the largest of the values g corresponding
to the eigenvectors of G with all nonzero entries.

3.4.4. Fusion Vectors

It can be shown using standard results of linear algebra that any
symmetric idempotent matrix P=PT=P2 with complex entries can be
orthonormally diagonalized; that is, written as P=UDU &1, where the
matrix of eigenvectors U satisfies U &1=U T and D has rank P 1's on the
diagonal and all other entries 0. We note that if P=P* then this simply
amounts to an orthonormal diagonalization of a real symmetric matrix,
but that if P{P* then it differs from a unitary diagonalization and that,
in fact, P is then not normal and a unitary diagonalization is not possible.

From this result, it follows that each fusion matrix Pr(a, b) can be
decomposed using F r

ab orthonormal eigenvectors with eigenvalue 1. We
shall denote, for r # [1,..., g] and a, b # G satisfying F r

ab>0, such eigenvectors
as U r(a, b): , where :=1,..., F r

ab , and refer to these as fusion vectors.
The decomposition and orthonormality are then

:

F r
ab

:=1

U r(a, b): U r(a, b)T
: =Pr(a, b) (3.21)

and

U r(a, b)T
: U r(a, b):$=$::$ (3.22)

or, more explicitly,

:

F r
ab

:=1

U r(a, b):, (a, c1 ,..., cr&2 , b) U r(a, b):, (a, d1 ,..., dr&2 , b)

=Pr(a, b) (a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2 , b)
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and

:
(a, c1 ,..., cr&2 , b) # G

r
ab

U r(a, b):, (a, c1 ,..., cr&2 , b)U r(a, b):$, (a, c1 ,..., cr&2 , b)=$::$

We note, as examples, that for the first two fusion levels,

P1(a, a) (a), (a)=\U 1(a, a)1, (a)=1, for each a # G (3.23)

and

P2(a, b) (a, b), (a, b)=\U 2(a, b)1, (a, b)=1, for each (a, b) # G2 (3.24)

We shall assume that a specific choice of U r(a, b): has been made. All
other possible choices are then given by transformations,

U r(a, b): [ :

F r
ab

:$=1

Rr(a, b)::$ U r(a, b):$ (3.25)

where Rr(a, b) is an orthonormal matrix,

:

F r
ab

:"=1

Rr(a, b)::" Rr(a, b):$:"=$::$ (3.26)

We shall see that all of the lattice model properties of interest will be
invariant under such transformations and thus independent of the choice of
fusion vectors.

3.5. Boundary Weights

We now use the boundary operators (2.28) to obtain a set of bound-
ary Boltzmann weights for the lattice model for each pair (r, a), where
r # [1,..., g&1] is a fusion level and a is a node of G. It is thus natural to
regard these pairs as labeling the boundary conditions,

[boundary conditions] W [(r, a) | r # [1,..., g&1], a # G] (3.27)

The (r, a) boundary weights are given, for each (b, c, d ) # G3 with F r
ba F r

da

>0 and ; # [1,..., F r
ba], $ # [1,..., F r

da], by

Bra \c
d
b

$
; } u, !+=

�1�2
c

s0(2!) �1�4
b �1�4

d

:
(b, e1 ,..., er&2, a) # G

r
ba

(d, f1 ,..., fr&2, a) # G
r
da

U r(b, a);, (b, e1 ,..., er&2 , a)

_U r(d, a)$, (d, f1 ,..., fr&2, a)

_K r
1(u, !) (c, b, e1 ,..., er&2 , a), (c, d, f1 ,..., fr&2 , a) (3.28)
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where K r
1(u, !) is taken in the graph representation of T(r&1, *) and !

corresponds to a boundary field. We shall represent the boundary weights
diagrammatically as

Bra \c
d
b

$
; } u, !+= (3.29)

We see that

number of (r, a) boundary weights=((F r)2 G2)aa (3.30)

We shall refer to a boundary weight (3.28) as being of diagonal type
if b=d and ;=$ and as being of nondiagonal type otherwise, and we note
that in the majority of previous studies involving such boundary weights,
only diagonal weights were considered.

We also note, as an example, that the (1, a) boundary weights are all
diagonal and given by

B1a \c
a
a

1
1 } u, !+=

s0(!+u) s1(!&u) �1�2
c

s0(2!) �1�2
a

(3.31)

A (1, a) boundary condition is thus one in which the state of every alter-
nate boundary spin is fixed to be a, while each other boundary spin, whose
state can be any c adjacent to a on G, is associated with a weight propor-
tional to �1�2

c . We shall refer to such a boundary condition, in which the
state of every alternate boundary spin is fixed, as semi-fixed.

We now find that the boundary weights can also be expressed as

Bra \c
d
b

$
; } u, !+=&\s0(2!) `

r&2

k=1

s&k&1(u&!) sk(u+!)+
&1

_

U r(d, a)$, (d, f1 , f2 ,..., fr&2 , a)

�1�4
d �1�2

g

�1�4
b �1�2

a

U r(b, a);, (b, e1 , e2 ,..., er&2 , a) (3.32)

596 Behrend and Pearce



File: 822J 284021 . By:XX . Date:11:12:00 . Time:10:18 LOP8M. V8.B. Page 01:01
Codes: 2623 Signs: 1578 . Length: 44 pic 2 pts, 186 mm

this following straightforwardly from (2.28), (2.20), (3.14), (3.6), (3.10),
(3.21) and (3.22). In this form, we see that the (r, a) boundary weights can
be considered as having been constructed by starting on the right at node a,
essentially with the level 1 boundary weights (3.31), and adding a fused
double row of bulk weights of width r&1.

The boundary weights, together with the bulk weights (3.6), satisfy the
boundary Yang�Baxter equation,

:
(g, h) # G 2

(GbgGdgGehF r
ha>0)

:

F r
ha

#=1

W \d
c

g
b } u&v+ Bra \g

h
b

#
; } u, !+

_W \ e
d

h
g } *&u&v+ Bra \e

f
h

$
# } v, ! +

= :
(g, h) # G 2

(GchGdgGf gF r
ha>0)

:

F r
ha

#=1

Bra \c
h
b

#
; } v, !+ W \ g

d
h
c } *&u&v+

_Bra \ g
f
h

$
# } u, !+ W \ f

e
g
d } u&v+ (3.33)

for each (b, c, d, e, f ) # G5 with F r
ba F r

fa>0 and ; # [1,..., F r
ba], $ # [1,..., F r

fa].
This equation can be verified by expressing the bulk and boundary weights
in terms of bulk and boundary operators, using (3.8) and (3.28), and
applying the operator form of the boundary Yang�Baxter equation, (2.32).
In doing this, the fusion matrix which is formed on the interior of each side
of the equation by the sum on # and (3.21) can be moved to the exterior
by expressing the fusion matrices in terms of fusion operators using (3.14)
and the boundary operators in terms of fused row operators using (2.28)
and applying the push-through relations (2.21). Meanwhile, the orientation
of the central bulk weights on each side of (3.33) can be changed to that
required for (2.32) by using crossing symmetry (3.10), with the eigenvector
entries from (3.10) canceling where needed with those introduced explicitly
through (3.28).
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We note that the boundary Yang�Baxter equation (3.33) is still satisfied
after renormalization of the boundary weights,

Bra \c
d
b

$
; } u, !+ [ f ra(u, !) Bra \c

d
b

$
; } u, !+ (3.34)

where f ra are arbitrary functions. It is also still satisfied after gauge trans-
formations of the boundary weights,

Bra \c
d
b

$
; } u, !+

[ :

F r
ba

;$=1

:

F r
da

$$=1

S ra(b);;$ S ra(d )$$$ Bra \c
d
b

$$
;$ } u, !+ (3.35)

where S ra(e) are arbitrary orthonormal matrices,

:

F r
ea

:"=1

S ra(e)::" S ra(e):$:"=$::$ (3.36)

Indeed, a transformation (3.25) of the fusion vectors simply induces a
gauge transformation of the boundary weights with

S ra(e)=Rr(e, a) (3.37)

In addition to the boundary Yang�Baxter equation, some other
important local relations satisfied by the boundary weights are boundary
reflection symmetry,

Bra \c
d
b

$
; } u, !+=Bra \c

b
d

;
$ } u, !+ (3.38)

boundary crossing symmetry,

:
(b, e, d ) # G

3
bd

W \d
c

e
b } 2u&*+ Bra \e

d
b

$
; } u, !+

=s0(2u) Bra \c
d
b

$
; } *&u, !+ (3.39)
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and the boundary inversion relation,

:
e # G

(GceF r
ea>0)

:

F r
ea

#=1

�1�4
b �1�4

d �1�2
e

�c
Bra \c

e
b

#
; } u, !+ Bra \c

d
e

$
# } &u, ! +

=
s0(!&u) s0(!+u) sr(!&u) sr(!+u)

s0(2!)2 $bd $;$ (3.40)

for each (b, c, d ) # G3 with F r
ba F r

da>0 and ; # [1,..., F r
ba], $ # [1,..., F r

da].
Boundary reflection symmetry follows from (3.28), boundary crossing sym-
metry can be proved by expressing the boundary weights in (3.39) in the
form (3.32) and repeatedly applying the Yang�Baxter equation (3.12), and
the boundary inversion relation follows from the operator form of the
boundary inversion relation, (2.33).

3.6. Boundary Edge Weights

We now introduce boundary edge weights in terms of which the
boundary weights of the previous section can be expressed.

We begin by defining, for each boundary condition (r, a), a set of
boundary edges as

Era=[(b, c) # G2 | F r
baF r+1

ca >0] (3.41)

We note that the boundary edges are ordered pairs and that, in contrast
to the graph's set of edges for which (b, c) # G2 � (c, b) # G2, the appearance
of (b, c) in Era need not imply the appearance of (c, b) in Era.

The (r, a) boundary edge weights are now given, for each (b, c) # Era,
; # [1,..., F r

ba] and # # [1,..., F r+1
ca ], by

Era(b, c);#=
S 1�2

r �1�4
c

�1�4
b

:
(b, d1 ,..., dr&2 , a) # G

r
ba

U r(b, a);, (b, d1 ,..., dr&2 , a)

_U r+1(c, a)#, (c, b, d1 ,..., dr&2 , a) (3.42)

We shall represent the boundary edge weights diagrammatically as

E ra(b, c);#= (3.43)

We see that

number of (r, a) boundary edge weights=(F rGF r+1)aa (3.44)
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We note, as an example, that for the (1, a) boundary condition,

E1a=[(a, c) | Gac=1], E1a(a, c)11=\�1�4
c ��1�4

a (3.45)

We now find, substituting (2.29) into (3.28) and using (3.14), (3.21)
and (3.22), a general expression for the boundary weights in terms of
boundary edge weights,

Bra \c
d
b

$
; } u, !+=

s0(!&u) sr(!+u) �1�2
c

s0(2!) �1�2
b

$bd $;$

+
s0(2u)
s0(2!)

:

F ca
r+1

#=1

Era(b, c);# Era(d, c)$# (3.46)

From this, we immediately see that at u=! the boundary weights are
independent of ! and can be decomposed as a sum of products of boundary
edge weights,

Bra \c
d
b

$
; } !, ! += :

F ca
r+1

#=1

E ra(b, c);# E ra(d, c)$#

(3.47)

We note that the origin of this decomposition is the fact, apparent from
(2.29), that at u=! the boundary operators are proportional to fusion
operators, so that the decomposition of boundary weights is essentially
equivalent to the eigenvector decomposition of projectors.

We shall refer to this point, u=!, as the conformal point, since it is
here that certain lattice models are expected to exhibit conformal behavior,
with the set of (r, a) boundary edge weights providing a lattice realization
of a particular conformal boundary condition.

We find, by using (2.30) in (3.28), that a decomposition similar to (3.47)
also occurs at u=&!,

Bra \c
d
b

$
; } &!, !+= :

F ca
r&1

#=1
(r{1)

E r&1, a(c, b)#; Er&1, a(c, d )#$ (3.48)

We therefore see that, apart from an unimportant reversal of the order of
the nodes in the boundary edges, the (r, a) boundary condition at u=&!
is equivalent to the (r&1, a) boundary condition at u=!. In fact, decom-
positions of the form (3.47) or (3.48) also occur at other points, for example
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at u=&r*&!, u=r*+! or points related to these by trigonometric peri-
odicity, but since these points all involve the same boundary edge weights
up to reordering of the nodes in the boundary edges or relabeling of r as
r\1, we can, without loss of generality, restrict our attention to the single
conformal point u=!.

We also note that the sum in (3.47) is empty if F r+1
ca =0. It is thus

possible that for a particular boundary condition, certain boundary weights
are nonzero away from the conformal point but vanish at the conformal
point. From (3.46), we find that such boundary weights are specifically
those for which b=d, ;=$, F r

ba Gbc>0 and F r+1
ca =0.

We see from (3.46) that the boundary weights satisfy the boundary
anisotropy property

Bra \c
d
b

$
; } 0, !+=

s0(!) sr(!) �1�2
c

s0(2!) �1�2
b

$bd $;$ (3.49)

The second term on the right side of (3.46) also vanishes for ! � \i� so
that, assuming *�? � Z,

Bra \c
d
b

$
; } u, \i�+=\

ie�ir* �1�2
c

2 sin * �1�2
b

$bd $;$ (3.50)

Comparing the right sides of (3.49) or (3.50) with the (1, a) boundary
weights (3.31), we see that at u=0 or ! � \i� the nonzero (r, a) bound-
ary weights reduce, up to unimportant normalization, to (1, b) boundary
weights, with each (1, b) weight, for any b, appearing F r

ab (which may be
zero) times.

Finally, we note that a gauge transformation of the boundary edge
weights,

E ra(b, c);# [ :

F r
ba

;$=1

:

F ca
r+1

#$=1

S ra(b);;$ S r+1, a(c)##$ E ra(b, c);$#$ (3.51)

induces a gauge transformation (3.35) of the boundary weights, for any
S ra(e) satisfying (3.36).

3.7. Transfer Matrices and the Partition Function

We now proceed to a study of some aspects of the complete lattice. We
shall be considering a square lattice on a cylinder of width N and circum-
ference 2M lattice spacings, with the left boundary condition and boundary
field given by (r1 , a1) and !1 and the right boundary condition and boundary
field given by (r2 , a2) and !2 . In particular, we shall express the partition
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function for the model using double-row transfer matrices, these being
defined in terms of the bulk and boundary weights of the previous sections.
Double-row transfer matrices of this type were introduced in ref. 2 and first
used for interaction-round-a-face models in ref. 33.

An additional feature of the lattice to be considered here is that alter-
nate rows will be associated with spectral parameter values u and *&u.
Also, the left boundary will be associated with the spectral parameter value
*&u and the right boundary with value u. These values are used since they
result in the double-row transfer matrices forming a commuting family. The
most physically relevant point is the isotropic point u=*�2, at which all
rows and both boundaries are associated with the same value of the spectral
parameter. Combining this with the conformal point described in the pre-
vious section, the case of most interest here is thus u=!1=!2=*�2.

We begin by defining a set of paths consistent with boundary conditions
(r1 , a1) and (r2 , a2) and lattice width N,

GN
r1 a1 | r2a2

=[(;1 , b0 ,..., bN , ;2) | (b0 ,..., bN) # GN+1, F r1
a1b0

F r2
bNa2

>0,

;1 # [1,..., F r1
a1 b0

], ;2 # [1,..., F r2
bN a2

]] (3.52)

We see that

|GN
r1 a1 | r2a2

|=(F r1GNF r2)a1a2
(3.53)

which is invariant under interchange of a1 and a2 or of r1 and r2 , since
F r1, F r2 and G are symmetric and mutually commuting matrices.

We now introduce a double-row transfer matrix DN
r1a1 | r2a2

(u, !1 , !2)
with rows and columns labeled by the paths of GN

r1a1 | r2a2
and entries defined

by

DN
r1 a1 | r2a2

(u, !1 , !2) (;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)

= :
(c0 ,..., cN ) # GN+1

(>N
j=0 Gbj cj

Gcj dj
=1)

Br1a1 \c0

d0

b0

$1

;1 } *&u, !1+

__ `
N&1

j=0

W \cj

bj

cj+1

bj+1 } u+ W \dj

cj

dj+1

cj+1 } *&u+&Br2a2 \cN
dN

bN

$2

;2 } u, !2+

(3.54)
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We note that if GN
r1a1 | r2a2

is empty, then DN
r1a1 | r2a2

(u, !1 , !2) is zero-dimen-
sional with its value taken as 0.

The partition function for the lattice model is now given by

ZNM
r1a1 | r2a2

(u, !1 , !2)=tr(DN
r1a1 | r2a2

(u, !1 , !2))M

(3.55)

We can see from the first equality of (3.55) that the task of evaluating the
partition function is equivalent to that of evaluating the eigenvalues
4N

r1a1 | r2a2
(u, !1 , !2)k , k=1,..., (F r1GNF r2)a1a2

, of DN
r1a1 | r2a2

(u, !1 , !2), with

ZNM
r1a1 | r2a2

(u, !1 , !2)=:
k

(4N
r1a1 | r2a2

(u, !1 , !2)k)M (3.56)

3.8. Transfer Matrix Properties

We shall now show that the double-row transfer matrices satisfy a
variety of important properties. In particular, we shall find that applying
certain transformations to the parameters of the model results only in
similarity transformations of the transfer matrix. This implies that these
parameter transformations are symmetries of the model, since the transfer
matrix eigenvalues and partition function are invariant under any such
similarity transformation.

3.8.1. Commutation

It follows from the Yang�Baxter equation (3.12), inversion relation
(3.13) and boundary Yang�Baxter equation (3.33) that the double-row
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transfer matrices commute for any two values, u and v, of the spectral
parameter,

[DN
r1a1 | r2a2

(u, !1 , !2), DN
r1a1 | r2 a2

(v, !1 , !2)]=0 (3.57)

This can be proved diagrammatically, as done in Section 3.4 of ref. 33.

3.8.2. Transposition

It follows straightforwardly from (3.10) and (3.38) that each double-
row transfer matrix is similar to a symmetric matrix. More specifically,
defining

AN
r1a1 | r2a2 (;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)=

�1�4
bN

�1�4
b0

$(;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)

(3.58)

and

D� N
r1 a1 | r2a2

(u, !1 , !2)=AN
r1a1 | r2a2

DN
r1a1 | r2a2

(u, !1 , !2)(AN
r1a1 | r2a2

)&1 (3.59)

we have

(D� N
r1a1 | r2a2

(u, !1 , !2))T=D� N
r1a1 | r2a2

(u, !1 , !2) (3.60)

This implies that if D� N
r1 a1 | r2a2

(u, !1 , !2) is real, as for example occurs if
� is the Perron�Frobenius eigenvector and u, !1 and !2 are appropriately
chosen, then the eigenvalues of DN

r1a1 | r2a2
(u, !1 , !2) are all real.

3.8.3. Gauge Invariance

We see that the model is invariant under any gauge transformation
(3.35) of the boundary weights since this results only in a similarity trans-
formation of the double-row transfer matrix,

DN
r1 a1 | r2a2

(u, !1 , !2) [ SN
r1a1 | r2a2

DN
r1 a1 | r2a2

(u, !1 , !2)(SN
r1a1 | r2a2

)&1 (3.61)

where

SN
r1a1 | r2a2 (;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)

=S r1 a1(b0);1$1
S r2a2(bN);2$2

$(b0 ,..., bN ), (d0 ,..., dN ) (3.62)

3.8.4. Simplification at Completely Anisotropic Points

It follows from the anisotropy property (3.11), boundary anisotropy
property (3.49), crossing symmetry (3.10) and boundary crossing symmetry
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(3.39) that at the completely anisotropic points, u=0 and u=*, the
double-row transfer matrices are proportional to the identity,

DN
r1 a1 | r2 a2

(0, !1 , !2)=DN
r1a1 | r2a2

(*, !1 , !2)

=
S2 s0(!1) s0(!2) sr1

(!1) sr2
(!2)

s0(2!1) s0(2!2)
I (3.63)

3.8.5. Crossing Symmetry

It follows from the Yang�Baxter equation (3.12), inversion relation
(3.13) and boundary crossing symmetry (3.39) that the double-row transfer
matrices satisfy crossing symmetry,

DN
r1 a1 | r2a2

(*&u, !1 , !2)=DN
r1a1 | r2a2

(u, !1 , !2) (3.64)

This, like (3.57), can be proved diagrammatically, as done in Section 3.3 of
ref. 33.

3.8.6. Left-Right Symmetry

It follows from reflection symmetry (3.9) and boundary reflection sym-
metry (3.38) that on interchanging the left and right boundary conditions
and boundary fields, we have

DN
r2 a2 | r1a1

(u, !2 , !1) RN
r1a1 | r2a2

=RN
r1a1 | r2a2

(DN
r1a1 | r2a2

(*&u, !1 , !2))T (3.65)

where RN
r1a1 | r2 a2

is a square matrix with rows labeled by the paths of
GN

r2a2 | r1a1
, columns labeled by the paths of GN

r1a1 | r2a2
and entries given by

RN
r1a1 | r2a2 (;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)=$ (;2 , bN ,..., b0 , ;1), ($1 , d0 ,..., dN , $2) (3.66)

Combining (3.65) and the invertibility of RN
r1 a1 | r2a2

with (3.60) and (3.64),
we see that DN

r1a1 | r2a2
(u, !1 , !2) and DN

r2a2 | r1a1
(u, !2 , !1) are related by a

similarity transformation, so that this complete interchanging of the left
and right boundaries is a symmetry of the model.

3.8.7. Symmetry Under Interchange of r1 , !1 and r2 , !2

It can also be shown that under interchange of r1 , !1 and r2 , !2 , we
have

DN
r2 a1 | r1a2

(u, !2 , !1) CN
r1a1 | r2a2

(!1 , !2)=CN
r1a1 | r2a2

(!1 , !2) DN
r1a1 | r2a2

(u, !1 , !2)

(3.67)
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where CN
r1a1 | r2a2

(!1 , !2) is a square matrix with rows labeled by the paths
of GN

r2a1 | r1a2
, columns labeled by the paths of GN

r1 a1 | r2a2
and entries given by

CN
r1a1 | r2a2

(!1 , !2)(;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)

=
�1�4

b0
�1�4

bN
�1�4

d0
�1�4

dN

�1�2
a1

�1�2
a2

_ :
(c0 ,..., cN&1) # G N

(GcN&1a2
> N&1

j=0 F
r1
bj cj

F
r2
cj dj

>0)

:

F
r1
b0 c0

:0=1

} } } :

F
r1
bN&1 cN&1

:N&1=1

:

F
r2
c0 d 0

#0=1

} } } :

F
r2
cN&1 dN&1

#N&1=1

d0 #0 c0

Wr2 r1 \$1 :0 } !1&!2+*+a1 ;1 b0

cj 1 cj+1 dj 1 dj+1

__ `
N&1

j=0

W 2r1 \:j :j+1 } !1+2*+ W 2r2 \#j #j+1 } !2+*+&bj 1 bj+1 cj 1 cj+1

(3.68)

in which we take cN=a2 , :N=;2 and #N=$2 .
The weights which appear in (3.68) are fused bulk weights which are

defined, for each r, s # [1,..., g&1], as fused r&1 by s&1 blocks of bulk
weights,

d # c
W rs \$ ; } u+=

(3.69)

a : b
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These fused weights can be regarded as lattice generalizations of the 1 by
r&1 and r&1 by 1 fused blocks considered in (2.20). They satisfy a
generalized Yang�Baxter equation, as given in (3.39) of ref. 44, and it is by
using this equation, and expressing the boundary weights in the double
row transfer matrices in the form (3.32), that (3.67) can be proved. In
doing this, it is the (!1+2*)-dependent 1 by r1&1 fused weights in (3.68)
which, together with the generalized Yang�Baxter equation, allow the
!1 -dependent r1&1 by 2 fused block of bulk weights within the left bound-
ary weight to be propagated to the right. Similarly, it is the (!2+*)-
dependent 1 by r2&1 fused weights which allow the !2 -dependent r2&1 by
2 fused block within the right boundary weight to be propagated to the left,
and it is the (!1&!2+*)-dependent r2&1 by r1&1 fused weight which
allows the two blocks of bulk weights from the left and right boundary
weights to be interchanged.

We also note that the generalized Yang�Baxter equation allows the
fused weights within CN

r1a1 | r2a2
(!1 , !2) to be rearranged. In particular, the

(!1&!2+*)-dependent fused weight, which in (3.68) is on the far left of
the lattice row, can be propagated to an arbitrary position further to the
right, while reversing the order of the (!1+2*) and (!2+*)-dependent
fused weights to the left of its final position. This essentially corresponds to
the fact that, in proving (3.67), the order with which the blocks from the
left and right boundaries are interchanged is arbitrary.

By using a generalized inversion relation, it can also be shown that
CN

r1a1 | r2a2
(!1 , !2) is invertible (except at isolated values of !1 or !2 which,

by continuity, are unimportant), its inverse being proportional to
CN

r2a1 | r1a2
(!2 , !1). It thus follows that transfer matrices with r1 , !1 and r2 , !2

interchanged are related by a similarity transformation, so that this partial
interchanging of the left and right boundaries is a symmetry of the model.

Finally, we note that a simple generalization of the results of this
section is that it is also possible, up to similarity transformation, to
propagate the fused block of bulk weights within either boundary weight to
an arbitrary position within the interior of the transfer matrix. The impor-
tance of this observation is that it is consistent with the viewpoint in con-
formal field theory of the boundary conditions corresponding to local
operators.

3.8.8. Properties Arising from ! � i�

Various properties follow from the ! � i� (or equivalently ! � &i�)
form (3.50) of the boundary weights.

For example, applying this limit to both the left and right boundary
fields we find that DN

r1a1 | r2 a2
(u, i�, i�) is proportional to a direct sum,
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over a$1 , a$2 # G, of DN
1a$1 | 1a$2

(u, !1 , !2) with this term being repeated F r1
a1a$1

F r2
a2a$2

times in the sum.
As a further example, we can attach an additional r1&1 by 2 fused

block on the left and an additional r2&1 by 2 fused block on the right of
DN

r$1 a1 | r$2a2
(u, !1 , !2), where each of these blocks is of the same form as that

in (3.32) and we take ! � i� in each. We then find, from (3.50), that the
resulting matrix is proportional to a corresponding direct sum and, using
methods similar to those of Section 3.8.7, that the two attached blocks can be
interchanged up to similarity transformation. This therefore gives the result

�
a$1 , a$2 # G

F
r1
a1 a$1

F
r2
a2 a$2 DN

r$1 a$1 | r$2a$2
(u, !1 , !2)

r �
a$1 , a$2 # G

F
r1
a1 a$1

F
r2
a2 a$2 DN

r$1a$1 | r$2a$2
(u, !1 , !2) (3.70)

where r indicates equality up to similarity transformation and the super-
scripts on � indicate the number of times that the corresponding terms
appear in the direct sum. This relation implies that

:
a$1 , a$2 # G

F r1
a1a$1

F r2
a2a$2

ZNM
r$1a$1 | r$2a$2

(u, !1 , !2)

= :
a$1 , a$2 # G

F r2
a1a$1

F r1
a2 a$2

ZNM
r$1 a$1 | r$2a$2

(u, !1 , !2) (3.71)

3.8.9. Decomposition into Single-Row Transfer Matrices at the
Conformal Point

It follows from (3.47) that if both boundaries are at their conformal
point, that is if u=*&!1=!2#!, then the double-row transfer matrix
decomposes into a product of two single-row transfer matrices. We denote
these, generally not square, matrices as T8 N

r1a1 | r2a2
(!), with rows labeled by

the paths of GN
r1a1 | r2a2

and columns labeled by the paths of GN
r1+1, a1 | r2+1a2

,
and T� N

r1a1 | r2a2
(!), with rows labeled by the paths of GN

r1+1, a1 | r2+1, a2
and

columns labeled by the paths of GN
r1a1 | r2 a2

. The entries of these matrices are
given by

T8 N
r1a1 | r2a2

(!) (;1 , b0 ,..., bN , ;2), (#1 , c0 ,..., cN , #2)

={
E r1a1(b0 , c0);1#1

`
N&1

j=0

W \cj

bj

cj+1

bj+1 } !+ E r2a2(bN , cN );2#2
,

0,

`
N

j=0

Gbj cj
=1

`
N

j=0

Gbj cj
=0

(3.72)
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and

T� N
r1a1 | r2a2

(!) (#1 , c0 ,..., cN , #2), (;1 , b0 ,..., bN , ;2)

={
E r1a1(b0 , c0);1#1

`
N&1

j=0

W \bj

cj

bj+1

cj+1 } *&!+ E r2a2(bN , cN );2 #2
,

0,

`
N

j=0

Gcj bj
=1

`
N

j=0

Gcj bj
=0

(3.73)

We now see, using (3.47), that the decomposition of the double-row
transfer matrix at the conformal point is

DN
r1a1 | r2a2

(!, *&!, !)=T8 N
r1a1 | r2a2

(!) T� N
r1a1 | r2a2

(!) (3.74)

We emphasize that the orientations of the boundary edge weights in the
two single-row transfer matrices in (3.74) are opposite with respect to a
fixed direction along the boundary. Thus, even at the isotropic point
!=*�2, at which adjacent rows of the lattice become indistinguishable in
the bulk, the alternating orientations of the boundary edge weights will still
distinguish adjacent rows at the boundaries.

We see from (3.10) that T� N
r1a1 | r2a2

(!)=(AN
r1+1, a1 | r2+1, a2

)&2 (T8 N
r1a1 | r2a2

(!))T

(AN
r1a1 | r2 a2

)2, where AN
r1 a1 | r2a2

is given by (3.58), and therefore that

DN
r1a1 | r2 a2

(!, *&!, !)

=(AN
r1a1 | r2a2

)&1 T� N
r1a1 | r2 a2

(!)(T� N
r1 a1 | r2a2

(!))T AN
r1 a1 | r2a2

(3.75)

where T� N
r1a1 | r2a2

(!)=AN
r1a1 | r2a2

T8 N
r1a1 | r2a2

(!)(AN
r1a1 | r2a2

)&1.

This immediately implies that if T� N
r1a1 | r2a2

(!) is real, then
DN

r1 a1 | r2a2
(!, *&!, !) has all nonnegative eigenvalues.

3.8.10. Properties Arising from Graph Bicolorability

We now consider some properties which arise if the graph G is
bicolorable. Although we have not assumed until now that G is bicolorable,
all of the specific A, D and E cases to be considered in the next section
have this property.

Bicolorability of G means that a parity ?a # [&1, 1] can be assigned
to each node a # G so that adjacent nodes always have opposite parity; that is,

Gab=1 O ?a?b=&1 (3.76)
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We now note that it follows from (3.18) that each F r with r even�odd
is an odd�even polynomial in G, which leads to a generalization of (3.76)
to a selection rule on the fused adjacency matrices,

F r
ab>0 O ?a?b=(&1)r+1 (3.77)

Proceeding to the effect of graph bicolorability on the lattice model,
a square lattice can be naturally divided into two interpenetrating sublat-
tices, with the nearest neighbors of each site on one sublattice being sites
on the other. Thus, if G is bicolorable then the condition that the spin
states on neighboring lattice sites be adjacent nodes on G implies that, in
each spin assignment, the spin states on one sublattice all have parity 1,
while those on the other all have parity &1.

Using (3.77), there is also a consistency condition between the left and
right boundary conditions,

?a1
?a2

=(&1)r1+r2+N (3.78)

since otherwise GN
r1a1 | r2a2

is empty and DN
r1a1 | r2 a2

(u, !1 , !2) and
ZNM

r1a1 | r2a2
(u, !1 , !2) are zero. If this condition is satisfied, then the sublat-

tices are fixed by the boundary conditions; that is, the sublattice which
contains all parity 1, or all parity &1, spin states is the same for all
possible assignments.

Finally, we note that (3.77) also implies that for each boundary edge
(b, c) # Era, the parities of b and c are respectively opposite to and the same
as ?a(&1)r, and that therefore any pair of nodes can appear in only one
order in a particular set of boundary edges.

4. CRITICAL UNITARY A�D�E MODELS

In this section, we specialize to the critical unitary A�D�E models, for
which G is an A, D or E Dynkin diagram with Coxeter number g and �
is the Perron�Frobenius eigenvector of the adjacency matrix. In these
cases, *=?�g and the regime of interest here is 0<u<*. This class of
models was first identified and studied in ref. 10. The A and D models are
the critical limits of models introduced in refs. 47 and 48 respectively, but
the E models do not have off-critical counterparts. We also note that if �
is instead taken as a submaximal adjacency matrix eigenvector, then the
critical nonunitary A�D�E models are obtained.

Fusion of the A models was introduced in refs. 41�43, while fusion of
the D and E models was first studied in ref. 44. We shall also consider
intertwiner relations among these models, these having been studied in
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detail in refs. 23 and 49�51. In particular, we shall find that certain sym-
metries in the fusion and intertwiner properties of these models lead to
various additional properties of the boundary conditions, transfer matrices
and partition functions.

We shall also study the explicit forms of the boundary weights and
boundary edge weights for these models. For the A models, various
methods have previously been used to obtain sets of diagonal boundary
weights in refs. 4 and 32�34 and sets containing nondiagonal weights in
refs. 4, 31, 32, 34, and 35, and all of the A boundary weights found here
represent certain cases of these previously-known weights. For the D and
E models, sets of diagonal boundary weights were found by direct solution
of the boundary Yang�Baxter equation in ref. 34, but most of the sets
obtained here contain nondiagonal weights and were not previously
known.

Finally, we shall consider the connection between the lattice model
boundary conditions at the conformal and isotropic points and the confor-
mal boundary conditions of the corresponding unitary minimal theories.

4.1. Graphs and Adjacency Matrices

The A, D and E Dynkin diagrams with Coxeter number g are
explicitly given by

Ag&1=vwwvwww & & wwwvwwwv , g=2, 3,... (4.1)
1 2 g&2 g&1

v
g�2&

Dg�2+1=v
1
wwvw

2
ww & & wwwvww

g�2&2
wwv

g�2&1

, g=6, 8,... (4.2)

v
g�2+

v
6

E6=v
1
wwvw

2
wvw

3
wvw

4
wv

5
, g=12 (4.3)

v
7

E7=v
1
wwvw

2
wvw

3
wvw

4
wvw

5
wv

6
, g=18 (4.4)
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and

v
8

E8=v
1
wwvw

2
wvw

3
wvw

4
wvw

5
wvw

6
wv

7
, g=30 (4.5)

We note that when referring to the nodes g�2& and g�2+ of Dg�2+1 , we
shall use the convention that if the superscript is not specified then the
choice is immaterial. Furthermore, if a numerical value for g�2& or g�2+ is
required in any equation, it is to be taken as g�2.

The eigenvalues of the adjacency matrices of these graphs are
2 cos(kj?�g), j=1,..., |G|, where kj are the Coxeter exponents, as given
explicitly by

Ag&1 : kj= j, j=1,..., g&1

Dg�2+1 : kj={2j&1,
g�2,

j=1,..., g�2
j= g�2+1

E6 : (k1 ,..., k6)=(1, 4, 5, 7, 8, 11) (4.6)

E7 : (k1 ,..., k7)=(1, 5, 7, 9, 11, 13, 17)

E8 : (k1 ,..., k8)=(1, 7, 11, 13, 17, 19, 23, 29)

It can also be shown that for an integer k, and any A�D�E graph with
Coxeter number g,

_ an adjacency matrix eigenvector with all non-
zero entries and associated eigenvalue 2 cos(k?�g)

� k is coprime to g

(4.7)

We note, as already mentioned in Section 3.4.1, that (4.7) implies that, for
any A�D�E case, the maximum fusion level and Coxeter number are equal,
and that they can thus both be denoted by g.

Throughout the rest of Section 4, we shall restrict our attention to the
unitary A�D�E models, which are associated with the Perron�Frobenius
eigenvector and thus with the Coxeter exponent k1=1. Therefore, from this
point on, we shall take

*=?�g (4.8)
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and � to be the Perron�Frobenius eigenvector, which can be explicitly
given by

�a=

Sa , a=1,..., g&1; Ag&1

(4.9)

{Sa ,
1�(2 sin *),

a=1,..., g�2&1
a=g�2

; Dg�2+1

{
Sa ,
sin((l&1) *)�sin(2*),
2 cos((l&2) *),
sin((l&3) *)�sin(2*),

a=1,..., l&3
a=l&2
a=l&1
a=l

; El , l=6, 7, 8

where, from (2.4), Sa=sin(a*)�sin *.
It is also important here to consider a particular involution a [ a� of

the nodes of each graph, this being given by the graph's Z2 symmetry
transformation for the A, Dodd and E6 cases and by the identity for the
Deven , E7 and E8 cases. More explicitly, we have

a� ={
g&a,
g�2�,
6&a,
a,

a # Ag&1

a= g�2\ # Dg�2+1 , g�2+1 odd
a # E6"[6]
otherwise

(4.10)

We see that the eigenvector entries (4.9) are invariant under this involution,

�a� =�a (4.11)

We also observe that each A, D and E graph is bicolorable and that
we may set the parities as

?a=(&1)a (4.12)

We now consider the A, D and E fused adjacency matrices. A more
comprehensive treatment of these can be found in Appendix B of ref. 9.

For Ag&1 , we have explicitly

F r
ab={1;

0;
a+b+r odd, |a&b|�r&1 and r+1�a+b�2g&r&1
otherwise

(4.13)

We note that F r
ab for Ag&1 , with r{ g, is actually symmetric in all three

indices.
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For Dg�2+1 , we have explicitly

F r
ab=

2; a, b{ g
2 , a+b+r odd, |a&b|� g

2&| g
2&r|&1

(4.14)

and a+b& g
2�| g

2&r|+1

1; a, b{ g
2 , a+b+r odd, |a&b|� g

2&| g
2&r|&1

and |a+b& g
2 |�| g

2&r|&1

1; a{ g
2 , b= g

2 , a+ g
2+r odd and a�| g

2&r|+1

1; a= g
2 , b{ g

2 , b+ g
2+r odd and b�| g

2&r|+1

1; a= g
2

\ , b= g
2

\ and r#1 mod 4

1; a= g
2

\ , b= g
2

� and r#3 mod 4

0; otherwise

The fused adjacency matrices for E6 are given explicitly in Section 4.4.6.
We shall not give the E7 and E8 fused adjacency explicitly, since they can
be obtained straightforwardly using a computer from the recursive defini-
tion (3.18), but we note that for E7 each entry is in [0,..., 4] and that for
E8 each entry is in [0,..., 6].

We now list some properties which apply to all of the A, D and E
fused adjacency matrices. These properties can be proved by decomposing
these matrices in terms of their eigenvalues and eigenvectors as given in
ref. 9.

For r= g we have

F g=0 (4.15)

Meanwhile, for r # [1,..., g&1], F r form the basis of a commutative matrix
algebra, which is a representation of the Verlinde fusion algebra. These
g&1 matrices are therefore often referred to as Verlinde matrices and
denoted Vr .

These matrices can also be used to define related intertwiner matrices Ia,
for each a # G, with rows labeled by 1,..., g&1, columns labeled by the
nodes of G and entries given by

I a
rb=F r

ab (4.16)

Each I a then intertwines the fused adjacency matrices of G and those
of Ag&1 ,

IaF(G)r=F(Ag&1)r I a (4.17)
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For G=Ag&1 , this property simply amounts to the commutation of the
Ag&1 fused adjacency matrices, but if G is a D or E graph it forms the basis
of various relationships between G and the A graph with the same Coxeter
number.

Finally, a property of the A, D and E fused adjacency matrices of
particular relevance here is that, for r # [1,..., g&1],

F g&r
ab =F r

a� b=F r
ab� (4.18)

An important special case of this is r=1, for which

F g&1
ab =$ab� (4.19)

4.2. Bulk Weights, Fusion Matrices, and Fusion Vectors

We now consider the bulk weights, fusion matrices and fusion vectors
of the critical unitary A, D and E models.

We see from (3.6) and (4.9) that the Ag&1 bulk weights are

W \a\1
a

a
a�1 } u+=s1(&u)

W \ a
a�1

a\1
a } u+=

(Sa&1Sa+1)1�2 s0(u)
Sa

(4.20)

W \ a
a\1

a\1
a } u+=

sa(\u)
Sa

It can also be shown, using (2.15), (3.8) and (4.20) together with
certain results on the fusion of Ag&1 bulk weights from ref. 43, that the
Ag&1 fusion matrices are given explicitly by

Pr(a, b) (a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2, b)

=\ `
(r+a&b&1)�2

m=2

Sm+\ `
(r&a+b&1)�2

m=2

Sm+\ `
(a+b+r&1)�2

m=(a+b&r+1)�2

Sm +
_\ `

r&1

m=0

=cm
=dm

(Scm
Sdm

)1�2+<\ `
r&1

m=2

Sm+ (4.21)

where in the fourth product we set c0=d0=a and cr&1=dr&1=b, and
where

=a={1,
&1,

a#0 or 1 mod 4
a#2 or 3 mod 4

(4.22)
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In fact, the only properties of the sign factors required here are =a # [&1, 1]
and =a&1=a+1=&1, so any of the three other assignments which satisfy
these could be used instead.

We can see from (4.21) that, in keeping with (3.20) and (4.13), each
nonzero Ag&1 fusion matrix has rank 1 and that the corresponding fusion
vectors, which are thus uniquely defined up to sign, are given, up to this
sign, by

U r(a, b)1, (a, c1 ,..., cr&2, b)

=_\ `
(r+a&b&1)�2

m=2

Sm+\ `
(r&a+b&1)�2

m=2

Sm+\ `
(a+b+r&1)�2

m=(a+b&r+1)�2

Sm+<\ `
r&1

m=2

Sm+&
1�2

_\ `
r&1

m=0

=cm

S 1�2
cm
+ (4.23)

where in the last product we set c0=a and cr&1=b.
Proceeding to Dg�2+1 , it is possible to write expressions, similarly

explicit to those for Ag&1 , for the bulk weights and entries of the fusion
matrices and fusion vectors, for a certain natural choice of these vectors.
Since each of these expressions involves many different cases, analogous to
those of (4.14), we do give them here. However, we note that, as with
Ag&1 , each Dg�2+1 bulk weight and fusion vector entry can be expressed as
a single product of terms.

We also note that each Dg�2+1 bulk weight and fusion matrix entry
can be expressed as a linear combination of Ag&1 bulk weights and fusion
matrix entries, with the coefficients being products of entries of so-called
intertwiner cells. These intertwiner cells, whose exact properties are out-
lined in refs. 23, 49�51, serve a similar role at the level of the bulk weights
to that served at the level of the adjacency matrices by the intertwiner
matrices (4.16). While the expressions provided by these intertwiner cells
may not be particularly compact when applied to specific cases, they are
still useful for deriving certain general properties using known properties of
the intertwiner cells and of the Ag&1 bulk weights and fusion matrices.

With regard to the E graphs, the number of different cases is particu-
larly large so that the numerical values of fusion matrix and fusion vector
entries are probably best evaluated using a computer. While this may result
in a somewhat unnatural choice of the fusion vectors, this is largely
immaterial since the lattice properties of interest are independent of this
choice. We also note that, exactly as with Dg�2+1 , each E bulk weight and
fusion matrix entry can be expressed as a linear combination of Ag&1 bulk
weights or fusion matrix entries using intertwiner cells and that these
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expressions can be used to obtain general properties of the E bulk weights,
fusion matrices and fusion vectors.

We now consider some properties which apply to all of the A, D and
E graphs. We first note, using (4.11), that the bulk weights are invariant
under the involution (4.10),

W \d
a

c
b } u+=W \d�

a�
c�
b� } u+ (4.24)

We see similarly that for the fusion matrices,

Pr(a, b) (a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2, b)=Pr(a� , b� ) (a� , c� 1 ,..., c� r&2 , b� ), (a� , d� 1 ,..., d� r&2, b� ) (4.25)

It follows from this that U r(a, b):, (a, c1 ,..., cr&2 , b) and U r(a� , b� ):, (a� , c� 1 ,..., c� r&2 , b� )

correspond to two orthonormal decompositions of both Pr(a, b) and
Pr(a� , b� ), and therefore that these fusion vectors are related by a transfor-
mation (3.25),

U r(a� , b� ):, (a� , c� 1 ,..., c� r&2 , b� )= :

F r
ab

:$=1

Rr(a, b)::$ U r(a, b):$, (a, c1 ,..., cr&2, b) (4.26)

Finally, we note that the fusion matrices P g&1(a, a� ), which from (4.19)
all have rank 1, can be used to generate the fusion matrices of lower fusion
level according to

:
(b, e1 ,..., eg&r&2 , a� ) # Gba�

g&r
P g&1(a, a� ) (a, c1 ,..., cr&2 , b, e1 ,..., eg&r&2 , a� ), (a, d1 ,..., dr&2 , b, e1 ,..., eg&r&2 , a� )

=
�b

Sr�a
Pr(a, b) (a, c1 ,..., cr&2 , b), (a, d1 ,..., dr&2, b) (4.27)

This can be proved by first obtaining the result for the A graphs using
(4.21) and then proceeding to the D and E graphs using intertwiner cells.

4.3. Additional Boundary Condition and Transfer Matrix
Properties

We now show that in addition to satisfying all of the properties outlined
in Section 3.8, including those of Section 3.8.10 arising from bicolorability
with parity (4.12), the critical unitary A�D�E models possess further
important symmetries associated with the involutions (4.10) and the inter-
twiner relations (4.16).
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4.3.1. Symmetry Under a1 [ a� 1 and a2 [ a� 2

We first consider the relationship between the (r, a) and (r, a� ) bound-
ary conditions. It follows straightforwardly from (4.18) and (3.41) that the
sets of boundary edges for these boundary conditions are related by

Era� =[(b� , c� ) | (b, c) # Era] (4.28)

Proceeding to the corresponding boundary edge weights and bound-
ary weights, we find, using (4.26), that

E ra� (b� , c� );#= :

F r
ba

;$=1

:

F ca
r+1

#$=1

S ra(b);;$ S r+1, a(c)##$ E ra(b, c);$#$ (4.29)

and

Bra� \c�
d�
b�

$
; } u, !+= :

F r
ba

;$=1

:

F r
da

$$=1

S ra(b);;$ S ra(d )$$$ Bra \c
d
b

$$
;$ } u, ! +

(4.30)

where the orthonormal transformation matrices in (4.26) and those in
(4.29) and (4.30) are related by (3.37).

It now follows from (4.24) and (4.30) that DN
r1a� 1 | r2a� 2

(u, !1 , !2) and
DN

r1 a1 | r2a2
(u, !1 , !2) are related by a similarity transformation,

DN
r1 a� 1 | r2a� 2

(u, !1 , !2) HN
r1a1 | r2a2

SN
r1a1 | r2a2

=HN
r1a1 | r2a2

SN
r1a1 | r2 a2

DN
r1a1 | r2a2

(u, !1 , !2) (4.31)

where SN
r1a1 | r2a2

is given by (3.62), using the same S ra(e) as in (4.30), and
HN

r1 a1 | r2a2
is a square matrix with rows labeled by the paths of GN

r1a� 1 | r2a� 2
columns labeled by the paths of GN

r1a1 | r2a2
and entries given by

HN
r1 a1 | r2a2 (;1b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2)=$(;1 , b� 0 ,..., b� N , ;1), ($1 , d0 ,..., dN , $2) (4.32)

4.3.2. Equivalence of (r, a) and (g&r&1, a� ) Boundary Conditions
at the Conformal Point

We now show that, at the conformal point and for r # [1,..., g&2], the
(r, a) and (g&r&1, a� ) boundary conditions are equivalent. This equiv-
alence takes the form of the boundary edge weights for each of these
boundary conditions being the same, except for a gauge transformation
and a reversal of the order of the nodes in each boundary pair, neither of
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which affects any properties of interest. We shall denote such an equiv-
alence of boundary conditions by W .

In terms of the set of boundary edges (3.41), it follows from (4.18)
that, for r # [1,..., g&2], the sets Era and E g&r&1, a� contain the same pairs
of nodes but with opposite ordering; that is,

E g&r&1, a� =[(c, b) | (b, c) # Era] (4.33)

We also see, from (4.15), that

E g&1, a� =< (4.34)

so that at the conformal point there are no (g&1, a) boundary conditions.
For the boundary edge weights, the equivalence of the (r, a) and

(g&r&1, a� ) boundary conditions is

E g&r&1, a� (c, b)#;= :

F r
ba

;$=1

:

F ca
r+1

#$=1

S ra(b);;$S r+1, a(c)##$ E ra(b, c);$#$ (4.35)

where S ra(e) are orthonormal matrices satisfying (3.36) which are defined
by

S ra(e)::$=(Sr�a ��e)1�2 :
(e, b1 ,..., bg&r&2 , a� ) # G ea�

g&r
:

(e, c1 ,..., cr&2 , a) # G
r
ea

U g&1(a� , a)1, (a� , bg&r&2 ,..., b1 , e, c1 ,..., cr&2 , a)

_U g&r(e, a� ):, (e, b1 ,..., bg&r&2, a� ) U r(e, a):$, (e, c1 ,..., cr&2 , a) (4.36)

We note that S ra(e) also satisfy

S ra(e)T=S g&r, a� (e) (4.37)

These relations, (4.35) and (4.37), and the orthonormality (3.36) can all be
proved using the general properties of the fusion matrices and fusion vectors,
(3.15), (3.16), (3.21), (3.22) and those which follow from (2.17), together
with (4.27).

We now note that, as labels, (r, a) and (g&r&1, a� ) are always dis-
tinct since for an Aodd , D or E graph g is even so that r and g&r&1 are
different, while for an Aeven graph g is odd so that a and a� = g&a are
different. Thus, due to the equivalence (4.35), there are at most
(g&2) |G|�2 distinct boundary conditions. Furthermore, by examining the
sets of boundary edges (3.41) for each A, D and E case, we find that there
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are no further equivalences between these sets, either direct or through
reversing the order of nodes in each edge. We therefore conclude that

number of boundary conditions at the conformal point=(g&2) |G|�2
(4.38)

Due to the consistency condition (3.78), the implementation of a given
left and right boundary condition at their conformal points on a lattice of
fixed width can be achieved using only two of the four possibilities which
arise from the two versions of each boundary condition. If (r1 , a1) and
(r2 , a2) is one of these possibilities, then the other is (g&r1&1, a� 1) and
(g&r2&1, a� 2) and the transfer matrices for the two are related by

DN
g&r1&1, a� 1 | g&r2&1, a� 2

(!, *&!, !)

=SN
r1+1, a1 | r2+1, a2

T� N
r1 a1 | r2a2

(*&!) T8 N
r1 a1 | r2a2

(*&!)(SN
r1+1, a1 | r2+1, a2

)&1

(4.39)

where SN
r1+1, a1 | r2+1, a2

is given by (3.62) and (4.36). Comparing this with
(3.74) we see that the ordering in the products of single-row transfer
matrices is different in each, which does not affect the nonzero eigenvalues
(although unimportant differences in the number of zero eigenvalues will
arise due to the different dimensions of the oppositely-ordered products).
We thus see that the partition functions are related by

ZNM
g&r1&1, a� 1 | g&r2&1, a� 2

(!, *&!, !)=ZNM
r1 a1 | r2a2

(*&!, !, *&!) (4.40)

Finally, we find, using (2.30) in (3.28), that the boundary edge weight
relation (4.35) implies the boundary weight relation

B g&r, a� \c
d
b

$
; } u, !+

= :

F r
ba

;$=1

:

F r
da

$$=1

S ra(b);;$ S ra(d )$$$ Bra \c
d
b

$$
;$ } u, &!+ (4.41)

with S ra(e) again given by (4.36). This then implies that

ZNM
r1a1 | r2a2

(u, !1 , !2)=ZNM
g&r1 , a� 1 | r2a2

(u, &!1 , !2)

=ZNM
r1a1 | g&r2 , a� 2

(u, !1 , &!2) (4.42)
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This relation taken at u=*&!1=!2=*&! is consistent with (4.40)
through the equivalence, which follows from (3.48), of the (r, a) boundary
condition at u=&! and the (r&1, a) boundary condition at u=!.

4.3.3. Intertwiner Symmetry

We now consider the relationship between the double-row transfer
matrices and partition functions of the model based on a D or E graph G,
with Coxeter number g, and those of the model based on Ag&1 . In par-
ticular, we shall find that any critical unitary A�D�E partition function can
be expressed as a sum of certain A partition functions.

It can be shown using intertwiner cells that, for each r1 , r2 , s$ #
[1,..., g&1] and a1 , a2 # G, we have

�
a # G

F s$
a1 a DN

r1a | r2 a2
(u, !1 , !2)r �

g&1

s=1

F s
a1 a2 DN, Ag&1

r1s$ | r2s(u, !1 , !2)

(4.43)

�
a # G

F s$
a2 a DN

r1a1 | r2a(u, !1 , !2)r �
g&1

s=1

F s
a1 a2 D

N, Ag&1
r1s | r2s$(u, !1 , !2)

where we are using r and the superscripts on � in the same ways as in
(3.70), and where the fused adjacency matrices on both sides and the trans-
fer matrices on the left sides refer to G, while the transfer matrices on the
right sides refer, as indicated, to Ag&1 .

Since the two forms of this relation can be proved similarly, and are
related through the symmetries of Sections 3.8.6 and 3.8.7, we shall con-
sider, from now on, only the first form.

We first discuss the details of the proof. The similarity transformation
in the first line of (4.43) can be implemented by an invertible matrix
Js$N

r1a1 | r2a2
which premultiplies the left side and postmultiplies the right side. The

rows of Js$N
r1 a1 | r2a2

and the rows and columns of �
g&1

s=1

F s
a1 a2 DN, Ag&1

r1 s$ | r2s (u, !1 , !2)

are labeled by the paths of

[(t0 ,..., tN , t, :2) | (1, t0 ,..., tN , 1) # (Ag&1)N
r1s$ | r2 t , F t

a1a2
>0, :2 # [1,..., F t

a1a2
]]

while the columns of Js$N
r1a1 | r2a2

and the rows and columns of �a # G
F s$

a1 a

DN
r1 a | r2a2

(u, !1 , !2) are labeled by the paths of

[(:1 , b, ;1 , b0 ,..., bN , ;2) | (;1 , b0 ,..., bN , ;2) # GN
r1b | r2 a2

,

F s$
a1b>0, :1 # [1,..., F s$

a1b]]
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The entries of these matrices are given by

Js$N
r1 a1 | r2a2 (t0 ,..., tN , t, :2), (:1 , b, ;1 , b0 ,..., bN , ;2)

b ;1 b0 bj bj+1

= :

F
t 0
a1 b0

#0=1

} } } :

F
tN
a1 bN

#N=1

Qr1a1 \:1 #0+_ `
N&1

j=0

Qa1 \#j #j+1+&s$ 1 t0 tj tj+1

bN ;2 a2

_Qr2 a1 \ #n :2+ (4.44)

tN 1 t

_�
a # G

F s$
a1 a DN

r1a | r2a2
(u, !1 , !2)& (:1 , b, ;1 , b0 ,..., bN , ;2), (:$1 , d, $1 , d0 ,..., dN , $2)

=$:1:$1
$bd DN

r1b | r2 a2
(u, !1 , !2) (;1 , b0 ,..., bN , ;2), ($1 , d0 ,..., dN , $2) (4.45)

and similarly for � g&1
s=1

F s
a1 a2 D

N, Ag&1
r1s$ | r2s(u, !1 , !2). In (4.44), Qa1 are inter-

twiner cells associated with the intertwiner matrix Ia1 of (4.16), and Qr1a1

and Qr2 a1 are fused blocks of such cells, of widths r1&1 and r2&1 respec-
tively. Thus, Js$N

r1a1 | r2a2
can be viewed as a row of intertwiner cells in which

the spins on the lower left and upper right corners are fixed to s$ and a2

respectively, the lower row of spins between s$ and a2 on Ag&1 label the
rows of the matrix and the upper row of spins between s$ and a2 on G label
the columns of the matrix. We also see that all of the matrices here are
square with dimension (I a1F r1GNF r2)s$a2

, it being possible using (4.17) to
propagate Ia1 to the right of this expression while replacing the adjacency
matrices of G with those of Ag&1 . The intertwiner cells are assumed to
satisfy an intertwiner relation, as given in (4.6a) of ref. 49, as well as two
inversion relations, as given in (4.6b) and (4.6c) of ref. 49. It follows
immediately from the inversion relations that Js$N

r1 a1 | r2a2
is invertible, with its

inverse being given, up to gauge transformations on the intertwiner cells,
by its transpose. Meanwhile, the equation corresponding to the first line of
(4.43) can be obtained by using one of the inversion relations to insert a
pair of cells between Js$N

r1a1 | r2a2
and �a # G

F s$
a1 a DN

r1a | r2 a2
(u, !1 , !2), using the

intertwiner relation and the form (3.32) of the boundary weights to propa-
gate these cells around a single loop, and then using an inversion relation
again to remove the inserted cells, thus giving � g&1

s=1
F s

a1 a2 D
N, Ag&1
r1s$ | r2s(u, !1 , !2)

Js$N
r1 a1 | r2a2

and completing the proof. We note that this last process is
probably best understood diagrammatically, with the lower part of the loop
involving the conversion in the lower row of the transfer matrix from G

622 Behrend and Pearce



weights to Ag&1 weights and the propagation of the row of intertwiner cells
to a position between the rows of the transfer matrix, and the upper part
of the loop involving the conversion of weights in the upper row of the
transfer matrix and the propagation of the row of cells to its final position.
We note that (4.43) is still valid and nontrivial for G=Ag&1 and that it
then corresponds to certain cases of (3.70). In fact, the Ag&1 intertwiner
cells Qa can be obtained by taking a u � i� limit on fused a&1 by 1
blocks of Ag&1 bulk weights.

We also note that the intertwiner cells Qa for G a D or E graph have
only been found explicitly, in refs. 23, 49�51, for a=1. However, for
various reasons, the existence of these cells for other values of a seems
guaranteed.

Finally, we observe that a particularly important case of (4.43) is
s$=1, for which

DN
r1a1 | r2a2

(u, !1 , !2)r �
g&1

s=1

F s
a1 a2 D

N, Ag&1
r11 | r2s (u, !1 , !2) (4.46)

which in turn implies that

ZNM
r1a1 | r2a2

(u, !1 , !2)= :
g&1

s=1

F s
a1a2

ZNM, Ag&1
r11 | r2s (u, !1 , !2) (4.47)

We thus see that the task of evaluating the partition functions of all of the
A�D�E models with boundary conditions (r1 , a1) and (r2 , a2) has been
reduced to that of evaluating the partition functions of just the A models
with boundary conditions (r1 , 1) and (r2 , s).

4.4. Boundary Weights

We now consider the explicit forms of the boundary weights and
boundary edge weights for the critical unitary A�D�E models.

4.4.1. A Graphs

For Ag&1 , we find, using (4.23) in (3.42) and then applying a simple
gauge transformation to remove a factor =c which arises, that the boundary
edge weights are given explicitly by

E ra(c\1, c)11=
(Sr�c+a)�2S(c\a�r)�2)1�2

(Sc\1 Sc)1�4 (4.48)
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We see that each of these weights is positive. We also see that, for
these weights, the relations (4.29) and (4.35) are

E r, g&a(g&b, g&c)11=E ra(b, c)11
(4.49)

E g&r&1, g&a(c, b)11=E ra(b, c)11

Substituting (4.48) into (3.46) we now find that the Ag&1 boundary
weights are

Bra \c
c\1
c\1

1
1 } u, ! +

=
_S(r�c+a)�2 S(c\a�r)�2 s0(!+u) sr(!&u)

+S(r\c+a)�2S(c�a\r)�2 s0(!&u) sr(!+u) &
Sr(ScSc\1)1�2 s0(2!)

(4.50)

Bra \c
c�1
c\1

1
1 } u, ! +

=
(S(r&c+a)�2S(r+c&a)�2S (c+a&r)�2S(c+a+r)�2)1�2 s0(2u)

(Sc&1Sc+1)1�4 S 1�2
c s0(2!)

All of the boundary weights which were found as solutions of the boundary
Yang�Baxter equation for the Ag&1 models and their off-critical extensions
in refs. 4, 31�35 can be related to those of (4.50) by using appropriate
values for the various parameters involved. In particular, we note that
more general boundary weights which depend on two boundary field
parameters are known, as for example given in (3.14)�(3.15) of ref. 4, and
that these reduce to the weights (4.50) when one of these parameters is set
to i�.

Some important special cases here are the (r, 1) and (g&r&1, g&1)
boundary conditions for which

Er1=[(r, r+1)], E g&r&1, g&1=[(r+1, r)]
(4.51)

E r1(r, r+1)=E g&r&1, g&1(r+1, r)=(Sr Sr+1)1�4

The corresponding boundary weights are all diagonal and given by

Br1 \r\1
r
r

1
1 } u, ! +=B g&r, g&1 \r\1

r
r

1
1 } u, &!+

=
S1�2

r\1s0(!\u) sr(!�u)

S 1�2
r s0(2!)

(4.52)

624 Behrend and Pearce



these weights matching those found in ref. 33. We see that for r # [2,...,
g&2] these cases provide an example in which boundary weights which
are nonzero away from the conformal point vanish at the conformal point.
More specifically, away from the conformal point, these cases represent
semi-fixed boundary conditions in which the state of every alternate bound-
ary spin is fixed to be r and that of each spin between these can be r&1
or r+1, while at the conformal point they represent completely fixed
boundary conditions in which only a single boundary spin configuration
... r, r+1, r, r+1 ... contributes to the partition function.

Other important cases here are the (1, a) W (g&2, g&a) boundary
conditions, with a # [2,..., g&2], for which

E1a=[(a, a&1), (a, a+1)], E g&2, g&a=[(a&1, a), (a+1, a)]
(4.53)

E1a(a, a\1)=E g&2, g&a(a\1, a)=(Sa\1�Sa)1�4

As already seen for the general case in (3.31), these are semi-fixed bound-
ary conditions in which the state of every alternate boundary spin is fixed
to be a.

We now observe that the only cases in which every edge of Ag&1

appears, in one order, in the set of boundary edges are

g odd: {E(g&1)�2, (g&1)�2=[(1, 2), (3, 2),..., (g&2, g&3), (g&2, g&1)]
E(g&1)�2, (g+1)�2=[(2, 1), (2, 3),..., (g&3, g&2), (g&1, g&2)]

g even: {E g�2&1, g�2=[(2, 1), (2, 3),..., (g&2, g&3), (g&2, g&1)]
E g�2, g�2=[(1, 2), (3, 2),..., (g&3, g&2), (g&1, g&2)]

(4.54)

These cases therefore represent boundary conditions in which each con-
figuration of boundary spins consistent with fixed even-spin and odd-spin
sublattices contributes a nonzero weight to the partition function at the
conformal point. If these weights are all equal, which in fact only occurs
for A3 , we refer to the boundary condition as free, while if the weights are
not all equal we refer to it as quasi-free. Finally, we note that all other
boundary conditions not of the fixed, semi-fixed, quasi-free or free type can
be regarded as intermediate between these types.

4.4.2. Example: A3

We now consider, as an example, the case A3 , this being the simplest
nontrivial A model. For any spin assignment in the A3 model, the spin
states on one sublattice are all 2, while each spin state on the other is either
1 or 3. The former sublattice, being frozen in a single configuration, can
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Table I. A3 Boundary Edge Weights

& E(&, 0)11=1 E(0, +)11=1

0 E(0, +)11=E(0, &)11=1 E(+, 0)11=E(&, 0)11=1

+ E(+, 0)11=1 E(0, &)11=1
a

1 2
r

therefore be discarded and the model viewed as a two-state model on the
other sublattice. It can be shown that the bulk weights of this model are
those of the critical Ising model, with the horizontal and vertical coupling
constants suitably parameterized in terms of the spectral parameter. It is
therefore natural to relabel the nodes of A3 as a frozen state 0 and Ising
states + and &; that is,

A3=vw
+

wvw
0

wv
&

(4.55)

The A3 fused adjacency matrices are, from (4.13),

1 0 0 0 1 0 0 0 1 0 0 0

F 1=\0 1 0+ F 2=\1 0 1+ F 3=\0 1 0+ F 4=\0 0 0+0 0 1 0 1 0 1 0 0 0 0 0

(4.56)

Using these matrices to determine each set of boundary edges and then
(4.48) to give the corresponding weights, we find that these weights are, up
to normalization, as given in Table I. We note that in this and subsequent
tables, we omit the superscripts on each E since their values are clear from
the position in the table.

We see that the three A3 boundary conditions at the conformal point
are:

v (1, +) W (2, &) W +fixed

v (1, &) W (2, +) W &fixed

v (1, 0) W (2, 0) W free

We note that the last of these boundary conditions is invariant under the
model's Z2 symmetry, while the first two are not.

4.4.3. Example: A4

We now consider, as another example, the case A4 . It is known that
this model can related to the tricritical hard square and tricritical Ising
models.
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The A4 fused adjacency matrices are

F 1=\
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1+ F 2=\

0
1
0
0

1
0
1
0

0
1
0
1

0
0
1
0+ F 3=\

0
0
1
0

0
1
0
1

1
0
1
0

0
1
0
0+
(4.57)

F 4=\
0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0+ F 5=\

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0+

Using these and (4.48), we find that the A4 boundary edge weights are, up
to normalization, as given in Table II.

We see that the six A4 boundary conditions at the conformal point are:

v (1, 1) W (3, 4) W ... 1, 2, 1, 2 ... fixed

v (1, 4) W (3, 1) W ... 3, 4, 3, 4 ... fixed

v (2, 1) W (2, 4) W ... 2, 3, 2, 3 ... fixed

v (1, 2) W (3, 3) W ... 2, 1�3, 2, 1�3 ... semi-fixed

v (1, 3) W (3, 2) W ... 3, 2�4, 3, 2�4 ... semi-fixed

v (2, 2) W (2, 3) W quasi-free

Table II. A4 Boundary Edge Weights

4 E(4, 3)11=1 E(3, 2)11=1 E(2, 1)11=1

E(2, 1)11=E(4, 3)11

3
E(3, 2)11=(- 5+1)1�8

E(3, 4)11=(- 5&1)1�8 =(- 5+1)1�8 E(1, 2)11=(- 5&1)1�8

E(3, 2)11=(- 5+1)1�8

E(2, 3)11=(5 - 5&11)1�8

E(1, 2)11=E(3, 4)11

2
E(2, 1)11=(- 5&1)1�8

E(2, 3)11=(- 5+1)1�8 =(- 5+1)1�8 E(2, 3)11=(- 5+1)1�8

E(4, 3)11=(- 5&1)1�8

E(3, 2)11=(5 - 5&11)1�8

1 E(1, 2)11=1 E(2, 3)11=1 E(3, 4)11=1

a
1 2 3

r
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4.4.4. D Graphs

For Dg�2+1 , we find, by substituting the fusion vector entries described
in Section 4.2 into (3.42) and then applying certain simple gauge transfor-
mations, that the boundary edge weights can be taken explicitly as

2&1�4| b, c=g�2 E ra
A (b, c)11 ; a{ g

2 , r� g
2&1

E ra(b, c)11={2&1�4| b, c=g�2 E r, g&a
A (b, c)11 ; a{ g

2 , r� g
2

21�4| b, c=g�2 E r, g�2
A (b, c)11 ; a= g

2

0; b{ g
2

E ra(b, c)12={\2&1�4 E r, g&a
A ( g

2 , g
2&1)11 ; b= g

2
\ , r� g

2&1

\2&1�4 E ra
A ( g

2 , g
2&1)11 ; b= g

2
\ , r� g

2

(4.58)
0; c{ g

2

E ra(b, c)21={\2&1�4 E r, g&a
A ( g

2&1, g
2)11 ; c= g

2
\ , r� g

2&1

\2&1�4 E ra
A ( g

2&1, g
2)11 ; c= g

2
\ , r� g

2

E ra(b, c)22={E r, g&a
A (b, c)11 ;

E ra
A (b, c)11 ;

r� g
2&1

r� g
2

where by X |b, c= g�2 we mean that X is only to be included if b= g�2 or
c= g�2, and where E ra

A (b, c)11 are the Ag&1 boundary edge weights as given
by (4.48). The fact that the Dg�2+1 boundary edge weights can be expressed
in terms of Ag&1 boundary edge weights follows from the intertwiner rela-
tions between the corresponding models.

We see that for any boundary condition, and in this gauge, there is at
most one negative boundary edge weight. We also see that, for these
weights, the relations (4.29) and (4.35) are

E ra� (b� , c� );#=_;#E ra(b, c);# , E g&r&1, a� (c, b)#;=E ra(b, c);# (4.59)

where

_;#={&1,
1,

Dodd with ;{#
otherwise

(4.60)

In fact, for Deven the first relation of (4.59) is trivial since the involution
a [ a� is the identity, but we note that the relation still holds if the involu-
tion is instead taken to be the graph's Z2 symmetry transformation and if
_12=_21 are replaced by &1.

Boundary weights for Dg�2+1 can be obtained by substituting the edge
weights (4.58) into (3.46). For some of the boundary conditions, all of the
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boundary weights are diagonal and these weights can be related to those
previously found in ref. 34. However, nondiagonal boundary weights for
the Dg�2+1 models, apart from one case of D4 considered in ref. 7, were not
previously known. We also note that since some simple, but (r, a)-dependent,
gauge transformations have been included in the boundary edge weights of
(4.58), some corresponding gauge factors need to be included in equations
which relate boundary weights at different values of (r, a), in particular
(3.48) and (4.41).

Finally, we note that, as with Ag&1 , certain of the Dg�2+1 boundary
conditions can be identified as being of fixed, semi-fixed, free or quasi-free
type.

4.4.5. Example: D4

We now consider, as an example, the case D4 . For any spin assign-
ment in the D4 model, the spin states on one sublattice are all 2, while each
spin state on the other is 1, 3 or 4, so that the model can be regarded as
a three-state model on the latter sublattice. The bulk weights of this model
can be shown to be those of the critical three-state Potts model. These bulk
weights are also invariant under any S3 permutation of the Potts spin
states. We shall use the more natural labeling of the nodes of D4 , 1 [ A,
2 [ 0, 3+ [ B and 3& [ C; that is,

v C

D4=vw
A

wwv
0

(4.61)

v B

The D4 fused adjacency matrices are, from (4.14),

F 1=F 5=\
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1+ F 2=F 4=\

0
1
0
0

1
0
1
1

0
1
0
0

0
1
0
0+

(4.62)

F 3=\
0
0
1
1

0
2
0
0

1
0
0
1

1
0
1
0+ F 5=\

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0+

where the rows and columns are ordered A, 0, B, C. Using these and (4.58),
we find that the D4 boundary edge weights are, up to normalization and
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Table III. D4 Boundary Edge Weights

C E(C, 0)11=1
E(0, A)11=
E(0, B)11=1

E(A, 0)11=
E(B, 0)11=1

E(0, C )11=1

B E(B, 0)11=1
E(0, A)11=
E(0, C )11=1

E(A, 0)11=
E(C, 0)11=1

E(0, B)11=1

E(A, 0)11=1 E(0, A)11=1

E(0, A)11=
E(A, 0)12=0 E(0, A)21=0

E(A, 0)11=

0 E(0, B)11=
E(B, 0)11=&1�2 E(0, B)11=&1�2

E(B, 0)11=

E(0, C )11=1
E(B, 0)12=- 3�2 E(0, B)21=- 3�2

E(C, 0)11=1
E(C, 0)11=&1�2 E(0, C )11=&1�2
E(C, 0)12=&- 3�2 E(0, C )21=&- 3�2

A E(A, 0)11=1
E(0, B)11=
E(0, C )11=1

E(B, 0)11=
E(C, 0)11=1

E(0, A)11=1

a
1 2 3 4

r

a simple gauge transformation on the (2, 0) and (3, 0) boundary conditions
which makes their S3 symmetry properties more apparent, as given in
Table III.

We see that the eight D4 boundary conditions at the conformal point
are:

v (1, A) W (4, A) W A fixed

v (1, B) W (4, B) W B fixed

v (1, C ) W (4, C ) W C fixed

v (2, A) W (3, A) W B and C mixed with equal weight

v (2, B) W (3, B) W A and C mixed with equal weight

v (2, C ) W (3, C ) W A and B mixed with equal weight

v (1, 0) W (4, 0) W free

v (2, 0) W (3, 0) W quasi-free in which same-spin pairs have

weight 1 and different-spin pairs have weight &1�2
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The nature of the last boundary condition is best seen by considering the
(2, 0) boundary weights at the conformal point, these being, up to nor-
malization,

B2, 0 \0
d
b

1
1 } !, !+={1;

&1�2;
b=d
b{d, b, d # [A, B, C]

(4.63)

This is therefore a boundary condition on nearest-neighbor pairs of Potts
spins, in which like and unlike neighbors are associated with weights 1 and
&1�2 respectively.

We see that the last two D4 boundary conditions are S3 symmetric,
while the first six are not. In fact, the (2, 0) boundary weights (4.63) repre-
sent the only possibility, other than reproducing the (1, 0) W (4, 0) weights,
which is S3 symmetric and consistent with a decomposition (3.47) in which
# is summed over two values.

4.4.6. E Graphs

For the E graphs, there are a large number of boundary conditions at
the conformal point (specifically, 30 for E6 , 56 for E7 and 112 for E8) and
many of these are in turn associated with a large number of boundary edge
weights. Therefore, since it is straightforward and more practical to obtain
the numerical values for these weights using a computer, we do not list
them here. However, as an example, we do give the sets of E6 boundary
edges.

The E6 fused adjacency matrices are

F 1=\
1 0 0 0 0 0

+ F 2=\
0 1 0 0 0 0

+ F 3=\
0 0 1 0 0 0

+
0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 1 0 1 0 1 1 0 2 0 1 0
0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0

F 4=\
0 0 0 1 0 1

+ F 5=\
0 0 1 0 1 0

+ F 6=\
0 1 0 1 0 0

+
0 0 2 0 1 0 0 1 0 2 0 1 1 0 2 0 1 0
0 2 0 2 0 1 1 0 3 0 1 0 0 2 0 2 0 2
1 0 2 0 0 0 0 2 0 1 0 1 1 0 2 0 1 0
0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0
1 0 1 0 1 0 0 1 0 1 0 1 0 0 2 0 0 0
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F 7=\
1 0 1 0 0 0

+ F 8=\
0 1 0 0 0 1

+ F 9=\
0 0 1 0 0 0

+
0 2 0 1 0 1 1 0 2 0 0 0 0 1 0 1 0 1
1 0 3 0 1 0 0 2 0 2 0 1 1 0 2 0 1 0
0 1 0 2 0 1 0 0 2 0 1 0 0 1 0 1 0 1
0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0

F 10=\
0 0 0 1 0 0

+ F 11=\
0 0 0 0 1 0

+ F 12=\
0 0 0 0 0 0

+
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

(4.64)

Using these, we find that the E6 boundary edges are as given in
Table IV. In this table we also give, for each (b, c) # Era, the values of F r

ba

and F r+1
ca as successive superscripts.

From this table, the properties (4.28) and (4.33) are immediately
apparent, and we can also gain some understanding of the nature of each
of the 30 boundary conditions at the conformal point.

4.5. Realization of Conformal Boundary Conditions

We now consider the relationship between the integrable boundary
conditions of the critical unitary A�D�E lattice models and the conformal
boundary conditions of the critical series of sl@(2) unitary minimal conformal
field theories.

Each conformal field theory of this type on a torus or cylinder is
associated with two graphs, the A graph Ag&2 and an A, D or E graph G

with Coxeter number g, this theory being denoted M(Ag&2 , G). As shown
in refs. 16�18, the lattice model based on G, with � the Perron�Frobenius
eigenvector and 0<u<*, can be associated with the field theory
M(Ag&2 , G).

In ref. 9, it was found that the complete set of conformal boundary
conditions of M(Ag&2 , G) on a cylinder is labeled by the set of pairs (r, a),
with r # [1,..., g&2], a # G and (r, a) and (g&r&1, a� ) being considered as
equivalent. We immediately see that this classification is identical to that of
the boundary conditions of the corresponding lattice model at the conformal
point.
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Table IV. E6 Boundary Edges

(1, 2)11 (2, 1)11

(3, 2)11 (2, 3)12 (3, 2)21 (2, 3)11

6 (6, 3)11 (3, 2)11

(3, 4)11

(2, 1)11

(2, 3)11

(4, 3)11

(4, 5)11

(3, 4)11 (4, 3)12 (3, 4)21 (4, 3)11

(1, 2)11

(3, 2)11

(3, 4)11

(5, 4)11

(2, 3)11

(4, 3)11 (3, 6)11

(3, 6)11 (6, 3)12 (3, 6)21 (4, 5)11

(5, 4)11 (6, 3)11

(2, 1)11 (1, 2)11 (2, 3)11 (3, 4)11

5 (5, 4)11 (4, 3)11 (3, 2)11

(3, 6)11 (2, 3)11 (3, 2)11 (4, 3)11 (3, 6)11 (4, 3)11

(6, 3)11 (3, 2)11 (2, 1)11

(6, 3)11 (3, 4)11 (4, 5)11 (5, 4)11

(2, 1)21 (1, 2)11

(2, 3)22 (3, 2)21

4
(4, 3)11

(4, 5)11

(3, 2)11

(3, 4)11

(3, 6)11

(5, 4)11

(2, 1)11

(2, 3)12

(4, 3)12

(6, 3)12

(1, 2)12

(3, 2)22

(3, 4)21

(3, 6)21

(4, 3)12 (3, 4)22

(2, 3)12

(4, 3)22

(4, 5)21

(6, 3)12

(3, 2)21

(3, 4)21

(3, 6)21

(5, 4)11

(2, 1)11

(2, 3)11

(4, 3)11

(6, 3)11

(1, 2)11

(3, 2)11

(4, 5)11 (3, 6)21

(6, 3)12 (5, 4)12

(2, 1)11 (1, 2)12 (2, 1)21 (1, 2)12 (2, 1)21 (1, 2)12 (2, 1)21 (1, 2)11

(3, 2)11 (2, 3)12 (3, 2)22 (2, 3)23 (3, 2)32 (2, 3)23 (3, 2)32 (2, 3)22 (3, 2)21 (2, 3)11

3 (3, 4)11 (4, 3)12 (3, 4)22 (4, 3)23 (3, 4)32 (4, 3)23 (3, 4)32 (4, 3)22 (3, 4)21 (4, 3)11

(3, 6)11 (4, 5)11 (3, 6)21 (4, 5)21 (3, 6)32 (4, 5)21 (3, 6)31 (4, 5)21 (3, 6)21 (6, 3)11

(6, 3)12 (5, 4)12 (6, 3)13 (5, 4)12 (6, 3)23 (5, 4)12 (6, 3)12 (5, 4)11

(2, 1)11 (1, 2)12

(2, 3)12 (3, 2)22

2
(2, 1)11

(2, 3)11

(1, 2)11

(3, 2)11

(3, 4)11

(3, 6)11

(2, 3)12

(4, 3)12

(4, 5)11

(6, 3)12

(3, 2)21

(3, 4)22

(3, 6)21

(5, 4)12

(4, 3)22 (3, 4)21

(2, 1)21

(2, 3)22

(4, 3)12

(6, 3)12

(1, 2)11

(3, 2)21

(3, 4)21

(3, 6)21

(2, 3)11

(4, 3)11

(4, 5)11

(6, 3)11

(3, 4)11

(5, 4)11

(4, 5)21 (3, 6)21

(6, 3)12 (5, 4)11

(4, 3)11 (3, 2)11 (2, 1)11 (1, 2)11

1 (1, 2)11 (2, 3)11 (3, 4)11

(3, 6)11 (4, 5)11 (3, 4)11 (2, 3)11 (3, 2)11 (2, 3)11

(6, 3)11 (3, 4)11 (4, 5)11

(6, 3)11 (5, 4)11 (4, 3)11 (3, 6)11

a
1 2 3 4 5 6 7 8 9 10

r

It was also shown in ref. 9 that the partition function of M(Ag&2 , G)
on a cylinder with conformal boundary conditions (r1 , a1) and (r2 , a2) is
given by

Zr1a1 | r2a2
(q)= :

g&2

r=1

:
g&1

s=1

F(Ag&2)r
r1r2

F(G) s
a1a2

/(r, s)(q) (4.65)
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where q is the modular parameter, F(Ag&2)r and F(G)s denote the fused
adjacency matrices of Ag&2 and G, and /(r, s) is the character of the
irreducible representation with highest weight

2(r, s)=
(rg&s(g&1))2&1

4g(g&1)
(4.66)

of the Virasoro algebra with central charge

c=1&
6

g(g&1)
(4.67)

The equivalence of the (r, a) and (g&r&1, a� ) conformal boundary
conditions is apparent by using (4.18) and the relation 2(g&r&1, g&s)=
2(r, s) to observe that the partition function (4.65) is unchanged by applying
this transformation to either of the boundary condition labels.

We now assert that, in the continuum scaling limit, the (r, a) bound-
ary condition in the lattice model at the conformal and isotropic point
provides a realization of the (r, a) conformal boundary condition of the
corresponding field theory. In particular, we expect that, as N � �, the
eigenvalues of DN

r1a1 | r2a2
(*�2, *�2, *�2) can be arranged in towers, with each

tower labeled by a pair (r, s) and the multiplicity of tower (r, s) given by
F(Ag&2) r

r1r2
F(G) s

a1a2
. We further expect that the j th largest eigenvalue in

this tower has the form

4 (r, s) j
r1a1 | r2a2

=exp[&2NF&2fr1 | r2
+2?(c�24&2(r, s)&k(r, s) j )�N+o(1�N )]

(4.68)

where F is the bulk free energy per lattice face, which depends only on g,
fr1 | r2

is the boundary free energy per lattice row, which depends only on g,
r1 and r2 , c and 2(r, s) are as given in (4.66) and (4.67), and k (r, s) j are non-
negative integers given through the expansion of the Virasoro characters by

/(r, s)(q)=q&c�24+2(r, s) :
�

j=1

qk(r, s) j, k(r, s) j�k(r, s) j+1 (4.69)

With the eigenvalues appearing in this tower structure, it follows using
(3.56) that, as N � �, the lattice model and conformal partition functions
are related by

ZNM
r1a1 | r2a2

(*�2, *�2, *�2)texp(&2MNF&2Mfr1 | r2
) Zr1a1 | r2a2

(q),

q=exp(&2?M�N ) (4.70)
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We note that we also expect related conformal behavior in a lattice model
which is at the conformal point and has 0<u<*, but which is no longer
at the isotropic point u=*�2.

The expectation that the lattice model boundary conditions correspond
in this way to the conformal boundary conditions is supported by the
results of numerical studies we have performed, the matching of the identifi-
cations made here of the nature of the lattice realizations of certain conformal
boundary conditions with those made in other studies, the consistency of
all of the symmetry properties of the lattice model partition function with
those of the conformal partition function, and analytic confirmation in
several cases.

In our numerical studies, we evaluated the eigenvalues of DN
r11 | r2s(*�2,

*�2, *�2) for certain A graphs, selected values of r1 , r2 and s, and several
successive values of N. We then extrapolated these results to large N and
verified consistency with (4.68) for these cases. This numerical data, used
with (4.46), also implied consistency with (4.68) for all of the related A, D
and E cases.

Regarding the identification of the nature of the lattice realizations of
particular conformal boundary conditions, this was done for all A3 cases
and all D4 cases except (2, 0) in refs. 1 and 19, for all (1, a) and (r, 1) cases
of Ag&1 and Dg�2+1 in ref. 20, for all A4 cases in ref. 25, and for the (2, 0)
case of D4 in ref. 29. In all of these studies, the lattice model boundary
conditions were shown to have exactly the same basic features as those
found here.

Proceeding to the consistency of symmetry properties, it follows
straightforwardly from (4.65) and the properties of the fused adjacency
matrices that the M(Ag&2 , G) partition function satisfies

Zr1 a1 | r2a2
(q)=Zr2a2 | r1a1

(q)=Zr2a1 | r1a2
(q)

=Zr1a� 1 | r2a� 2
(q)=Zg&r1&1, a� 1 | g&r2&1, a� 2

(q)

:
a$1, a$2 # G

F(G) r1
a1a$1

F(G) r2
a2a$2

Zr$1 a$1 | r$2a$2
(q) (4.71)

= :
a$1 , a$2 # G

F(G) r2
a1 a$1

F(G)r1
a2a$2

Zr$1 a$1 | r$2a$2
(q)

:
a # G

F(G) s$
a1a Zr1a | r2a2

(q)= :
g&1

s=1

F(G) s
a1a2

Zr1s$ | r2s(q)

We immediately see that these equalities are consistent with the lattice rela-
tions (3.65), (3.67), (4.31), (4.40), (3.71) and (4.43) respectively. We also
note that certain cases of the last equality of (4.71) and its lattice version
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(4.43), mostly with s$=r1=r2=1, were considered numerically and analyt-
ically in refs. 1, 20�24, while in ref. 28 free combinations of (1, a) lattice
boundary conditions in Ag&1 were studied analytically leading to (4.47)
with r1=r2=1 and a sum on a1 and a2 . However, in all of these studies,
the orientation of the lattice differed from that used here by a rotation of
45 degrees.

Finally, the partition function relation (4.70) has been proved analyti-
cally using techniques based on the Yang�Baxter and boundary Yang�
Baxter equations for a lattice with the same orientation as that used here
for all A3 cases in ref. 26 and for all A4 cases which lead to a single charac-
ter on the right side of (4.65) in ref. 27.

5. DISCUSSION

We have obtained various results on integrable boundary conditions
for general graph-based and, in particular, critical unitary A�D�E lattice
models. More specifically, we have systematically constructed boundary
weights, derived general symmetry properties and, for the A�D�E cases,
studied the relationship with conformal boundary conditions.

The general formalism presented here, or certain natural extensions of
it, can be applied to various other integrable lattice models which are
associated with rational conformal field theories of interest. We expect that
the corresponding integrable boundary conditions provide realizations of
the conformal boundary conditions of these theories, although we acknowl-
edge that for many of these models only the bulk weights are currently
known and that explicitly obtaining boundary weights may involve certain
technical challenges. Nevertheless, in conclusion, we list these other cases
and indicate their connections with those studied here:

v If, using (4.7), we choose an eigenvector of an A�D�E adjacency
matrix corresponding to a Coxeter exponent k with 1<k<g&1 and k
coprime to g, then a nonunitary A�D�E model is obtained which corre-
sponds to the nonunitary minimal theory M(Ag&k&1 , G). This enables the
consideration of all of the M(Ah&1 , G) minimal theories with h<g. The
M(Ah&1 , G) theories with h>g and G a D or E graph can not be obtained
in this way, but all of the M(Ah&1 , Ag&1) theories are accessible since in
this case h and g are interchangeable.

v By taking, in Section 3, G as an A(1), D(1) or E (1) Dynkin diagram,
and � as the Perron�Frobenius eigenvector of its adjacency matrix, lattice
models are obtained which correspond to certain conformal field theories
with central charge c=1. As noted in Section 3.4.1, for these models s is
given by the second case of (2.2) and there are infinitely many fusion levels.
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v By replacing the relations of (2.1) with those of the Hecke algebra,
certain lattice models and conformal field theories associated with sl@(n), for
n>2, can be obtained. In this case, although the lattice models become
significantly different, we expect that most of the results of at least Sec-
tion 2 remain unchanged.

v By using the dilute Temperley�Lieb algebra instead of the Temperley�
Lieb algebra, lattice models which correspond to the so-called tricritical
series of unitary minimal theories, M(Ag , G), can be obtained. However,
we note that the dilute Temperley�Lieb algebra contains considerably more
generators than the Temperley�Lieb algebra, so that the formalism would
be more complicated from the outset.

v It is also apparent that lattice models whose bulk weights are given
by fused square blocks of A�D�E bulk weights could be considered by
applying some relatively straightforward extensions to the formalism. The
field theories associated with these models include certain superconformal
theories. The cases of the A models involving only diagonal boundary
weights were studied in ref. 33, where it was shown that the double-row
transfer matrices of the standard and fused model together satisfy a
hierarchy of functional equations. We expect that equations of a similar
form can be derived, using the boundary inversion relation (3.40) and
other local properties, for the remaining A�D�E cases, such equations
being important in the analytic determination of transfer matrix eigen-
values.

v Finally, we mention the off-critical A and D models, which can be
associated with perturbed conformal field theories. The bulk weights in
these cases can no longer be expressed in terms of the Temperley�Lieb
algebra, but a fusion procedure still exists and boundary weights constructed
from fused blocks of bulk weights attached to diagonal boundary weights
still satisfy the boundary Yang�Baxter equation. Some integrable boundary
weights are known for these cases, as listed in ref. 34, and it is expected that
each of the A and D boundary conditions found here corresponds to a
critical limit of an off-critical integrable boundary condition.

ACKNOWLEDGMENTS

PAP is supported by the Australian Research Council. We are thank-
ful to Jean-Bernard Zuber for useful discussions and for his hospitality at
CEA-Saclay, where some of this work was done.

637Integrable and Conformal Boundary Conditions



REFERENCES

1. J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B
324:581�596 (1989).

2. E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A
21:2375�2389 (1988).

3. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
4. R. E. Behrend and P. A. Pearce, A construction of solutions to reflection equations for

interaction-round-a-face models, J. Phys. A 29:7827�7835 (1996).
5. G. Pradisi, A. Sagnotti, and Y. S. Stanev, Completeness conditions for boundary

operators in 2D conformal field theory, Phys. Lett. B 381:97�104 (1996).
6. A. Sagnotti and Y. S. Stanev, Open descendants in conformal field theory, Fortschr. Phys.

44:585�596 (1996).
7. R. E. Behrend, P. A. Pearce, and J.-B. Zuber, Integrable boundaries, conformal boundary

conditions and A�D�E fusion rules, J. Phys. A 31:L763�L770 (1998).
8. R. E. Behrend, P. A. Pearce, V. B. Petkova, and J.-B. Zuber, On the classification of bulk

and boundary conformal field theories, Phys. Lett. B 444:163�166 (1998).
9. R. E. Behrend, P. A. Pearce, V. B. Petkova, and J.-B. Zuber, Boundary conditions in

rational conformal field theories, Nucl. Phys. B 579:707�773 (2000).
10. V. Pasquier, Two-dimensional critical systems labelled by Dynkin diagrams, Nucl. Phys.

B 285:162�172 (1987).
11. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241:333�380 (1984).
12. D. Friedan, Z. Qiu, and S. Shenker, Conformal invariance, unitarity and critical

exponents in two dimensions, Phys. Rev. Lett. 52:1575�1578 (1984).
13. A. Cappelli, C. Itzykson, and J.-B. Zuber, Modular invariant partition functions in two

dimensions, Nucl. Phys. B 280:445�465 (1987).
14. A. Cappelli, C. Itzykson, and J.-B. Zuber, The A�D�E classification of minimal and A (1)

1

conformal invariant theories, Comm. Math. Phys. 113:1�26 (1987).
15. A. Kato, Classification of modular invariant partition functions in two dimensions, Mod.

Phys. Lett. A 2:585�600 (1987).
16. D. A. Huse, Exact exponents for infinitely many new multicritical points, Phys. Rev. B

30:3908�3915 (1984).
17. V. Pasquier, Operator content of the A�D�E lattice models, J. Phys. A 20:5707�5717

(1987).
18. V. Pasquier, Lattice derivation of modular invariant partition functions on the torus,

J. Phys. A 20:L1229�L1237 (1987).
19. J. L. Cardy, Effect of boundary conditions on the operator content of two-dimensional

conformally invariant theories, Nucl. Phys. B 275:200�218 (1986).
20. H. Saleur and M. Bauer, On some relations between local height probabilities and confor-

mal invariance, Nucl. Phys. B 320:591�624 (1989).
21. P. Di Francesco and J.-B. Zuber, SU(N ) Lattice Integrable Models and Modular

Invariance, in Recent Developments in Conformal Field Theories, S. Randjbar-Daemi,
E. Sezgin, and J.-B. Zuber, eds. (World Scientific, 1990), pp. 179�215.

22. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field
theories through quantum groups, Nucl. Phys. B 330:523�556 (1990).

23. P. Di Francesco, Integrable lattice models, graphs and modular invariant conformal field
theories, Int. J. Mod. Phys. A 7:407�500 (1992).

24. P. Dorey, Partition functions, intertwiners and the Coxeter element, Int. J. Mod. Phys. A
8:193�208 (1993).

638 Behrend and Pearce



25. L. Chim, Boundary S-matrix for the tricritical Ising model, Int. J. Mod. Phys. A
11:4491�4512 (1996).

26. D. L. O'Brien, P. A. Pearce, and S. O. Warnaar, Finitized conformal spectrum of the Ising
model on the cylinder and torus, Physica A 228:63�77 (1996).

27. D. L. O'Brien, P. A. Pearce, and S. O. Warnaar, Analytic calculation of conformal parti-
tion functions: Tricritical hard squares with fixed boundaries, Nucl. Phys. B 501:773�799
(1997).

28. M. T. Batchelor, Surface operator content of the AL face models, Physica A 251:132�142
(1998).

29. I. Affleck, M. Oshikawa, and H. Saleur, Boundary critical phenomena in the three-state
Potts model, J. Phys. A 31:5827�5842 (1998).

30. A. L. Owczarek and R. J. Baxter, A class of interaction-round-a-face models and its equiv-
alence with an ice-type model, J. Stat. Phys. 49:1093�1115 (1987).

31. H. Fan, B. Y. Hou, and K. J. Shi, General solution of reflection equation for eight-vertex
SOS model, J. Phys. A 28:4743�4749 (1995).

32. C. Ahn and W. M. Koo, Boundary Yang�Baxter equation in the RSOS�SOS representa-
tion, Nucl. Phys. B 468:461�486 (1996).

33. R. E. Behrend, P. A. Pearce, and D. L. O'Brien, Interaction-round-a-face models with
fixed boundary conditions: The ABF fusion hierarchy, J. Stat. Phys. 84:1�48 (1996).

34. R. E. Behrend and P. A. Pearce, Boundary weights for Temperley�Lieb and dilute
Temperley�Lieb models, Int. J. Mod. Phys. B 11:2833�2847 (1997).

35. C. Ahn and C. K. You, Complete non-diagonal reflection matrices of RSOS�SOS and
hard hexagon models, J. Phys. A 31:2109�2121 (1998).

36. H. N. V. Temperley and E. H. Lieb, Relations between the ``percolation'' and ``colouring''
problem and other graph-theoretical problems associated with regular planar lattices:
Some exact results for the ``percolation'' problem, Proc. Roy. Soc. Lond. A 322:251�280
(1971).

37. T. Deguchi, Y. Akutsu, and M. Wadati, Exactly solvable models and new link polyno-
mials. III. Two-variable topological invariants, J. Phys. Soc. Japan 57:757�776 (1988).

38. T. Deguchi, M. Wadati, and Y. Akutsu, Exactly solvable models and new link polynomials.
V. Yang�Baxter operator and Braid�Monoid algebra, J. Phys. Soc. Japan 57:1905�1923
(1988).

39. M. Wadati, T. Deguchi, and Y. Akutsu, Exactly solvable models and knot theory, Phys.
Rep. 180:247�332 (1989).

40. P. P. Kulish, N. Y. Reshetikhin, and E. K. Sklyanin, Yang�Baxter equation and represen-
tation theory: I, Lett. Math. Phys. 5:393�403 (1981).

41. E. Date, M. Jimbo, T. Miwa, and M. Okado, Fusion of the eight vertex SOS model, Lett.
Math. Phys. 12:209�215 (1986).

42. E. Date, M. Jimbo, T. Miwa, and M. Okado, Erratum and addendum: Fusion of the eight
vertex SOS model, Lett. Math. Phys. 14:97 (1987).

43. E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Exactly solvable SOS models
II: Proof of the star-triangle relation and combinatorial identities, Adv. Stud. Pure Math.
16:17�122 (1988).

44. Y. K. Zhou and P. A. Pearce, Fusion of A�D�E lattice models, Int. J. Mod. Phys. B
8:3531�3577 (1994).

45. P. P. Kulish, Yang�Baxter equation and reflection equations in integrable models, in Low-
Dimensional Models in Statistical Physics and Quantum Field Theory, H. Grosse and
L. Pittner, eds. (Springer-Verlag, 1996), pp. 125�144.

46. I. V. Cherednik, Factorizing particles on a half line and root systems, Teor. Mat. Fiz.
61:35�44 (1984).

639Integrable and Conformal Boundary Conditions



47. G. E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and generalized
Rogers�Ramanujan-type identities, J. Stat. Phys. 35:193�266 (1984).

48. V. Pasquier, Exact solubility of the Dn series, J. Phys. A 20:L217�L220 (1987).
49. P. Di Francesco and J.-B. Zuber, SU(N ) lattice integrable models associated with graphs,

Nucl. Phys. B 338:602�646 (1990).
50. P. Roche, Ocneanu cell calculus and integrable lattice models, Comm. Math. Phys.

127:395�424 (1990).
51. P. A. Pearce and Y. K. Zhou, Intertwiners and A�D�E lattice models, Int. J. Mod.

Phys. B 7:3649�3705 (1993).

640 Behrend and Pearce


